
The Strength of Weak Randomization: Easily
Deployable, Efficiently Searchable Encryption

with Minimal Leakage
David Pouliot

Portland State University
dpouliot@pdx.edu

Scott Griffy
Portland State University

scog@pdx.edu

Charles V. Wright
Portland State University

cvw@pdx.edu

Abstract—Efficiently searchable and easily deployable
encryption schemes enable an untrusted, legacy service
such as a relational database engine to perform searches
over encrypted data. The ease with which such schemes
can be deployed on top of existing services makes them
especially appealing in operational environments where
encryption is needed but it is not feasible to replace large
infrastructure components like databases or document
management systems. Unfortunately all previously known
approaches for efficiently searchable and easily deployable
encryption are vulnerable to inference attacks where an
adversary can use knowledge of the distribution of the
data to recover the plaintext with high probability.

We present a new efficiently searchable, easily deployable
database encryption scheme that is provably secure against
inference attacks even when used with real, low-entropy
data. We implemented our constructions in Haskell and
tested databases up to 10 million records showing our
construction properly balances security, deployability and
performance.

I. INTRODUCTION

Many organizations today are moving to the cloud,
shipping their critical data to servers over which they
have little control. Encrypting data before uploading
it into the cloud protects against theft or accidental
disclosure, but standard encryption mechanisms also
prevent the cloud service from performing any useful
computation on the client’s behalf. One of the most
desirable operations on encrypted data is search.

The problem of searching on encrypted data involves
inherent trade-offs between security, performance, and
utility. One part of a cryptographic construction’s utility
is the expressiveness of the queries that it supports.
For example, a construction that supports a large subset
of Structured Query Language (SQL) has more utility
than one that supports only exact-match queries. Another
aspect of utility more relevant to this paper is the ease
or difficulty of deploying a construction for use in the
real world.

A. The Importance of Deployability

Searchable Symmetric Encryption (SSE) encompasses
a class of efficient constructions for encrypted databases
that provide security for data and queries [12], [15], [22],
[46]. One practical limitation of SSE schemes is that they
can be very difficult to retrofit into existing production
systems. Grubbs [26] recounts one organization’s expe-
rience, where a team of applied cryptographers invested
12 person-months of effort to implement and deploy a
recent, high-performance SSE scheme [12]. In the end,
the new construction proved too difficult to integrate with
the businesses’ existing systems, and the prototype was
scrapped.

In the real world, there is demand for protections
that can be deployed immediately. To meet this need,
another parallel line of work has investigated “efficiently
searchable” and “efficiently deployable” schemes that
enable an untrusted server to efficiently index and search
on encrypted data [4], [6], [8], [31], [39]. An efficiently
searchable encryption (ESE) scheme is one that reveals
some function of the plaintext in order to allow logarith-
mic search time using a legacy database or information
retrieval system. This might be done through a query
proxy rather than an complex database construction.
An “easily deployable” efficiently searchable encryption
scheme is one that retains (enough of) the expected
format of the plaintext to enable search with an existing
application or cloud service [31] [39].

Breaking from SSE, ESE gives up some security in
exchange for the ability to easily deploy encryption on
existing cloud services without the long delays and high
cost of developing entirely new cryptographic systems
(for example, see Grubbs [26]). This approach also
frees the encryption developer from needing to worry
about a whole host of practical systems issues including:
availability, redundancy, performance, scaling, backups,

system monitoring, user accounts and access control, etc.
The underlying cloud service already takes care of these.

The CryptDB system of Popa et al [44] first demon-
strated the potential of this approach for protecting
outsourced relational databases. By layering a collection
of encryption techniques, including efficiently searchable
and order-preserving encryption, CryptDB supports most
SQL queries used by real applications. They achieved
near-native performance on queries from a standard
database benchmark, while storing only ciphertext in a
standard MySQL database. Similar efforts from industry
include SAP’s SEEED project [25] and Microsoft’s
Always Encrypted feature in SQL Server 2016 [1], which
is available commercially today.

Unfortunately, efficiently searchable constructions like
deterministic and order-preserving encryption trade off
more than just a little security. Inference attacks have
recently been demonstrated that enable an adversary to
recover some or all of the plaintext records if it has
some auxiliary information about their statistical distri-
bution [11], [18], [27], [41], [45], [50], [51]. In practice,
these attacks allow the adversary to recover almost the
entire database. Given the power of these attacks, it is
reasonable to ask: Is security feasible at all for efficiently
searchable and easily deployable encryption in the real
world? Much to our surprise, it turns out that the answer
is a qualified “yes.”

B. Contributions

In this paper, we focus on maximizing security in
operational scenarios where deployability is a hard re-
quirement. As a consequence of this deployability re-
quirement, the security of our schemes will necessarily
be somewhat less compared to other approaches where
easy real-world deployment is of no concern. Still, we
aim to provide provable security against the most com-
mon adversaries, for applications that otherwise could
afford no security at all.

We present a new, efficiently searchable, easily de-
ployable database encryption scheme that is provably
secure against inference attacks even when used with
low-entropy data from the real world. The security of
our schemes is tunable with a single parameter, allowing
database owners to choose the most appropriate balance
of security versus runtime performance and space over-
head for the demands of their individual applications.
We also achieve even stronger levels of security by
bucketizing a small portion of the data.

Weakly Randomized Encryption. Our core technique
is a generalization of a “folklore” encryption technique
that we call weakly randomized encryption (WRE). WRE

is a middle ground between deterministic encryption
(DET) and conventional, strongly randomized encryp-
tion. DET enables efficient, logarithmic-time search be-
cause it allows a legacy server to create an index from
only ciphertexts, but on the other hand, it provides
very little security for real data [41]. Conventional
(strongly) randomized encryption prevents the adversary
from learning even a single bit about the plaintext [24],
but in doing so, it also precludes the possibility of
efficient search.

In a weakly randomized encryption, only a few bits
of randomness sampled from a low-entropy distribution
are used in each encryption. Our analysis shows that
this is sufficient to protect against inference attacks if
we choose the distribution carefully. In order to perform
our WRE schemes, one must know the probability distri-
bution of the plaintexts. We believe it is not unreasonable
to ask that the data owner must know his data at least
as well as the attacker does. The distribution can also be
calculated during database initialization.

Deployability. Our constructions are compatible with
standard SQL relational databases. They can be de-
ployed immediately on popular cloud service platforms
including Google Cloud SQL1 and Amazon Relational
Database Service2. They are efficiently scalable up to
databases containing millions of records. We performed
queries returning up to 10,000,000 records. Our en-
crypted database, including its server-generated indices,
requires less than twice the space required for the plain-
text DB. Query response time with our Poisson Random
Frequency construction achieves response times within
27% of those of the plaintext database.

Security. We show that our construction is secure
against a passive “snapshot” attacker. We give the ad-
versary access to only the encrypted data and a source
of auxiliary information. We assume he does not have
access to the encrypted queries, the access patterns
or return results. This model includes important real-
world threats, including attackers who can obtain offline
access to the encrypted database by SQL injection or by
stealing a backup hard drive. In contrast, previous easily
deployable, efficiently searchable schemes fail to achieve
even this modest level of security [41].

We acknowledge that the adversary in this model
is weaker than the more powerful adversaries that are
typically considered for SSE or oblivious RAM. For new
applications that do not require deployability on legacy

1https://cloud.google.com/sql/
2https://aws.amazon.com/rds/

2

https://cloud.google.com/sql/
https://aws.amazon.com/rds/

infrastructure, we recommend that system builders use
those stronger but less-deployable constructions.

Outline. The paper is organized as follows. We review
related work in Section II. We introduce our notion of
security for WRE against inference attacks in Section
III and in Section IV we present the generic template
for a weakly randomized encryption. Then, in Section
V we give sequentially stronger variations on this idea,
leading up to our most secure construction, WRE with
bucketized Poisson salt allocation. We evaluate the
performance of our new constructions experimentally
with real databases in Section VI.

II. RELATED WORK

Bellare, Boldyreva, and O’Neill [6] and Amanatidis,
Boldyreva and O’Neill [4] proposed and analyzed early
ESE schemes using deterministic encryption (DET).
Those schemes are provably secure only when the plain-
text database has high min-entropy [6].

Order-preserving encryption was first described in
2004 by Agrawal et al., who proposed a method to
encrypt data so that the resulting ciphertexts retain the
same ordering as the plaintext [3]. OPE was first studied
formally by Boldyreva, Chenette, Lee, and O’Neill [8].
Boldyreva, Chenette, and O’Neill introduced the related
notion of efficiently orderable encryption [9], in which
a public, efficient function can be used to compare
the ciphertexts. The similar notion of order-revealing
encryption was proposed by Boneh et al. [10], and
recent works give efficient symmetric schemes for ORE
[14], [40]. The term “property-preserving encryption” is
sometimes used to encapsulate both OPE/ORE and ESE
[42].

Homomorphic encryption [21] and oblivious RAM
[23], [47] offer very strong guarantees of security, but
their practical performance is limited compared to other,
more efficient techniques like SSE [12], [15], [22], [46].
Recent SSE schemes support rich queries [7], [16], [19],
[30], [34], [36] and achieve fast performance even on
very large data sets [12] by exploiting spatial locality
[5], [17] and/or secure hardware extensions [20].

Deterministic ESE constructions were shown to be
insecure against inference attacks [41], [11], [45]. Even
more powerful attacks have been demonstrated against
OPE and ORE [41] [18] [29]. In some passive attack
scenarios, e.g. with a stolen hard drive, if the attacker has
access to server logs and other system artifacts, then this
may enable more powerful attacks [28]. Our techniques
provide a necessary but not sufficient level of protec-
tion against such attacks. Protecting other system-level

artifacts against inference attack remains an interesting
open problem, and is beyond the scope of this work.

Other recent attacks assume an online adversary who
can observe queries and their results in order to mount
inference attacks [38] [35]. Countering such attacks
remains an important open problem for all encrypted
database constructions.

Techniques for “bucketizing” search tokens, for exam-
ple with hash collisions, to reduce information leakage
have been proposed in encrypted search schemes since
their inception [6], [22], [39], [46]. Another line of work
also uses bucketization to enable range queries over
encrypted data without the use of ORE [32], [33], [49].

The paper most closely related to ours is a technical
report by Lacharité and Paterson on Frequency Smooth-
ing Encryption [37]. Their frequency-based homophonic
encoding is equivalent to our proportional salt allocation
method (see Section V-B).

III. SECURITY DEFINITIONS

Our security definitions are closely modeled after the
standard notion of security against a chosen plaintext
attack. Like all previous efficiently searchable construc-
tions, our scheme does not meet the standard defini-
tion of Indistinguishable Under Chosen Plaintext Attack
(IND-CPA) security, as we must reveal the equality of
some plaintexts in order to allow efficient searching. We
extend the standard IND-CPA definition as follows.

Where the CPA adversary submits pairs of plaintext
messages to its challenger, our adversary submits pairs of
lists of messages. In the real world, a snapshot adversary
does not know the order in which plaintext messages
were added to the database. To capture this limitation on
the adversary, in our game after the challenger randomly
selects one list of messages, it randomly shuffles the
selected list to prevent the adversary using any infor-
mation about the original order. Finally, the challenger
encrypts all messages in the shuffled list and provides
the encrypted list back to the adversary. The adversary’s
task is then to determine which list was selected.

The two lists of messages are required to contain the
same number of messages, and the messages (across
both lists) must all be of the same size. Otherwise
the adversary could use the size of the ciphertexts to
distinguish between the lists of messages. The other
requirement is that the order of messages in the lists
must be random. Otherwise the ordering of the search
tags could be used by the adversary to distinguish.

We call our security game Indistinguishability under
chosen unordered database attack (IND-CUDA).

3

Definition 1 (Negligible Function). A function : N →
N is negligible in k if for every positive polynomial p()
and sufficiently large k, (k) < 1/p(k). Let poly(k) and
negl(k) denote unspecified polynomial and negligible
functions in k, respectively.

Definition 2 (Pseudo-Random Function (PRF)). Let
F : {0, 1}kx{0, 1}n → {0, 1}m be an efficient keyed
function. F is a pseudo-random function if for all
probabilistic polynomial time distinguishers D there is
a negligible function negl such that∣∣∣Pr[DFk(·) = 1]− Pr[Df(·) = 1] ≤ negl(k)

∣∣∣
where the first probability is taken over the uniform
random choice of k and the randomness of D and the
second probability it taken over the uniform choice of
f ∈ Funcn and the randomness of D.

Informally, a pseudo-random function is a polynomial
time function that is indistinguishable from a truly ran-
dom function by any polynomial time adversary.

Definition 3 (Statistical Distance). The statistical dis-
tance ∆ between two random variables X,Y over a
common domain ω is defined as:

∆(X,Y) =
1

2

∑
α∈ω

∣∣∣∣Pr(X = α)− Pr(Y = α)

∣∣∣∣
Two random variables X,Y are said to be ε-close

if the statistical distance between them is at most ε.
Variables X,Y are called statistically indistinguishable
if ε = negl(α) with security parameter α.

An important application of Definition 3 is its use in
the probability of distinguishing between two random
variables or two distributions [2]. This probability is
bounded by the statistical distance between the distri-
butions.

Definition 4 (Distinguishing Two Distributions). Let
P0 and P1 be probability distributions on a finite set R.
Then for every adversary A, we have the distinguishing
advantage of A between P0 and P1,

Pr[DistA(P0, P1)] ≤ ∆(P0, P1)

Definition 5 (SHUFFLE). Let S be a set containing n
distinct objects. A SHUFFLE of S is an ordered list of
the objects in S. A SHUFFLE of the set {1, 2, ..., n} is
called a SHUFFLE of n.

To shuffle a list, the set S is the indexes into the list.
The shuffle of a list re-orders the indexes. Informally this
is a permutation of a list.

If S contains n distinct objects, then there are exactly
n! SHUFFLES of n.

Definition 6 (PSEUDO RANDOM SHUFFLE (PRS)).
Let PRS be a deterministic polynomial time function,
on input a key k ∈ {0, 1}n, message m ∈ {0, 1}∗, and
set of messages {l0, l1, ...li} where li ∈ {0, 1}∗, outputs
a SHUFFLE of {l0, l1, ...li}. We say PRS is a Pseudo
Random Shuffle if:
• (Pseudorandomness:) For any probabilistic polyno-

mial time algorithm D there is a negligible function
NEGL such that∣∣∣∣Pr[D(PRS(k,m, l))]− Pr[D(R(l))]

∣∣∣∣ ≤ NEGL(n)

where the first probability is taken over the uniform
choice of k ∈ {0, 1}n, m ∈ {0, 1}∗ and the
randomness of D, and the second probability is
taken over R(l), where R is a uniformly random
shuffle algorithm.

Definition 7 (The IND-CUDA Indistinguishability
Experiment). Let Π = (Gen, Enc, Dec) be a WRE
searchable encryption scheme with message space M
and key space K. Let X be the security parameter for
Π. Let A be an poly-bounded adversary.

IND-CUDAΠ,A(n,X):
• (k0, k1)← Gen(1n).
• A(X , n0, n1) chooses a pair of lists of messages
M0,M1 where |M0| = |M1| and for all mi,mj ∈
M0,mk,ml ∈M1, |mi| = |mj | = |mk| = |ml|

• A uniform bit b ∈ 0, 1 is chosen.
• edb← Enc((k0, k1,X), PRS(Mb)).
• b′ ← A(edb)
• The output of the experiment is 1 if b′ = b, and

0 otherwise. We write IND-CUDAA,Π = 1 if the
output of the experiment is 1, and in this case we
say that A succeeds.

Definition 8 (IND-CUDA Indistinguishability). We say
that the encryption scheme Π with security parameters
λ and n0, n1 has IND-CUDA security if, for all proba-
bilistic polynomial time adversaries A,

Pr[IND-CUDAA(n0,n1,X) = 1] ≤ 1

2
+ negl(X , n0, n1)

where (X , n0, n1) are the security parameters of our
scheme.

In Section V, we introduce our constructions and in
Section V-C we use our security definitions to evaluate

4

the single-column security of one of our constructions
(which uses a Poisson distribution). Our schemes are
tune-able to trade-off performance for security, and
have acceptable performance and security for sizable
databases as shown in Section VI.

IV. WEAKLY RANDOMIZED ENCRYPTION

In this section we formalize and extend a “folklore”
technique that we call weakly randomized encryption
(WRE) in text and in Figure 1. This is the basis for
all variants described in Section V.

Weakly Randomized Encryption
Let F be a pseudorandom function with key length
n1. Let Π′ = (Gen′, Enc′, Dec′) be an IND-CPA
secure private key encryption scheme with message
space m ∈ {0, 1}∗ and key length n0. Let getSalts
be a function that on input message m ∈ {0, 1}∗ and
message probability distribution function Pm and a
security parameter X , outputs S, a list of integers
representing the salts and PS , a probability distri-
bution over the salts. Define a private-key weakly
randomized encryption scheme Π as follows:
• Gen: on input 1n0 , 1n1 run Gen′(1n0) receiving

key k0 and choose uniform k1 ∈ {0, 1}n1 .
Choose security parameter X .

• Enc: on input keys k0, k1, security parameter X ,
and a message m, choose a random salt
(S, PS)← getSalts(m,Pm,X)

s
$← sample(S, PS)

Output the (search tag, ciphertext):

(t, c)←
(
Fk1(s||m), Enc′k0(m)

)
• Dec: on input key k0, and ciphertext (t, c) output

plaintext message

m← Dec′k0(c)

• Search: on input keys k0, k1, parameter X , and
a message m, (S, PS)← getSalts(m,Pm,X)
Output query (query) on table (T) containing
search tag column (Tt) as shown below:

query ←
(
Tt = Fk1(s1||m)

)
∨(

Tt = Fk1(s2||m)
)
∨ ...∨(

Tt = Fk1(s|s|||m)
)

Fig. 1: Weakly Randomized Encryption,
Decryption and Search

Previous efficiently searchable encryption construc-
tions either have specific requirements on the plaintext

data, like high min-entropy [6], or place limitations on
the adversary, such like limiting oracle queries [4] to
distinct plaintexts.

We can reduce the vulnerability of deterministic en-
cryption due to frequency analysis and other leakage in-
ference attacks by adding a small amount of randomness
to the encryption.

We show how a weakly randomized encryption
scheme can be constructed as the composition of (i)
any efficiently-searchable encryption scheme that satis-
fies the security definitions from [4] and (ii) a weak
randomization, or “salting,” function. In this work, we
construct our schemes using a variation of the Amana-
tidis, Boldyreva, and O’Neill [4] ESE, which is itself
composed of a randomized encryption scheme (RE) that
leaks nothing about the plaintext and a pseudo-random
function (PRF) that leaks nothing except equality.

Encryption. The WRE encryption takes as input:
symmetric keys k0, k1; a plaintext m; and the proba-
bility distribution PM of the plaintexts. The encryption
algorithm begins by calling the getSalts subroutine to
pseudorandomly generate a probability distribution PS
over a set S of salts for the message m. The getSalts
subroutine uses the plaintext distribution PM to choose
a distribution for the salts that makes the frequencies of
the ciphertexts (nearly) independent of the plaintext. We
give a handful of candidate algorithms for getSalts, and
evaluate their security, in the following sections. A salt
s ∈ S is chosen at random according to PS and is pre-
pended to the message. The encoding of the pre-pended
salts must ensure that no pairs of salts and messages of
different lengths results in the same search tag. Finally,
the salt and plaintext are input into the PRF to create
the search tag and the plaintext is encrypted with the
randomized encryption algorithm.

Search. To search the encrypted database for all
records with plaintext equal to m, the client first com-
putes all possible search tags t1, t2, . . . , tn for m and
then requests all records having tags equal to t1 or t2
... or tn. Because the number of unique search tags for
each plaintext is small, WRE allows the server to build
useful indexes on the encrypted data, just as with DET.
To perform the search for each ti, the server can use
built-in indexing techniques to return the list of matching
records on columns added by our scheme. Because no
custom indexing scheme needs be used, this allows it to
be deployed on unmodified DBMS services.

Decryption. Given a search tag and a randomized
ciphertext, the WRE decryption routine discards the tag
and uses the randomized encryption scheme’s decryption
function on the ciphertext to obtain the plaintext.

5

Updates. One advantage of WRE versus stronger
searchable encryption schemes like SSE is updates are
simple with WRE. To insert a new record in the en-
crypted database, we use the encryption function to
obtain its weakly randomized search tag and its (strongly
randomized) ciphertext. Then we simply append the tag
and ciphertext to the database. If we assume new records
inserted are drawn from the same plaintext distribution,
then adding new records will not affect the WRE tag
frequencies. Thus it is secure under the snapshot ad-
versary model. The challenge with SSE updates comes
from a different security model that allows the adversary
to query the database while providing forward security.
Because of security model and the encrypted indexes
used by SSE, SSE typically performs updates in batches
using new keys resulting in multiple indexes.

Future work will address security when the distribu-
tion changes from updates or if the adversary has specific
knowledge of the updated records.

The improvement in security, if any, of WRE over
deterministic encryption is not immediately clear. Sur-
prisingly, our analysis also shows that, with a carefully
chosen getSalts algorithm, we can construct a weakly
randomized encryption that leaks virtually no informa-
tion about the plaintext to a snapshot adversary who
knows the distribution PM .

V. WRE SCHEMES

In this section, we present our variants that each
complete the WRE construction described in Section IV.
We first present simpler/weaker constructions to give the
reader an understanding of our motivations for our later,
more secure schemes in Sections V-C and V-C1. We do
not fully analyze the security of these weaker schemes
because we believe they are inferior to later schemes.

A. Fixed Salts Method

We refer to the “folklore” version of weakly random-
ized encryption as the ”fixed salts” method, because
it always uses a constant number of salts for every
plaintext, regardless of the frequency of the plaintext.
We label the security parameter of this scheme as N ,
the number of unique salts per plaintext.

Notion of Security. If a plaintext m occurs in the
unencrypted database with frequency p, then with fixed
salts, each of m’s N ciphertexts will occur in the EDB
with frequency p

N . Intuitively, the fixed salt method
improves on the security of deterministic encryption
because it reduces the differences in the plaintext fre-
quencies.

Limitations. First, the overall improvement to security
is small. For large databases, the adversary can still guess
the plaintext with very high accuracy. Second, the fixed
salt WRE is not very efficient. In order to achieve any
security for a database of moderate size, it needs a large
number of salts, making query processing unnecessarily
intensive, especially for low-frequency plaintexts. We
could potentially improve both of these aspects if we
modified the chance of picking each salt with the fre-
quency of its respective plaintext. We formalize this idea
in the next section.

B. Proportional Salts Method

The fixed salts method can be improved by taking
into account the frequencies of the plaintexts in the
database. Intuitively, we would like each search tag to
occur with roughly the same frequency, regardless of the
plaintext. In the proportional salts method, we allocate a
different number of salts to each plaintext, in proportion
to its frequency in the plaintext data. Let the security
parameter be the total number of unique ciphertexts be
NT . Then for a plaintext m with frequency PM (m), we
use Nm ≈ PM (m) · NT salts. Therefore, for any two
plaintexts m0,m1 ∈M, their search tags will appear in
the EDB with approximately the same frequency.

Limitations. Unlike the fixed salts method, propor-
tional salt allocation requires that the data owner must
know the plaintext distribution PM in order to encrypt
a message.

Another limitation of proportional salts stems from
the fact that we must allocate an integer number of
salts for each plaintext. This gives rise to an aliasing
problem, where in certain situations using more salts
can actually reduce the security. For example, consider
an example database column with PM (m1) = 0.7 and
PM (m2) = 0.3. For NT = 10, this works out nicely, but
if we encrypt this database with NT = 12, then we will
round our number of search tags to 8 for plaintext m1,
each with frequency 0.0875, and 4 for plaintext m2, each
with frequency 0.075. Given sufficiently many encrypted
records, the adversary will be able to distinguish the
plaintexts using this frequency disparity.

In the following sections, we address the aliasing
problem of proportional salts by randomizing the fre-
quencies of salts.

C. Poisson Random Frequencies

A Poisson process is a simple stochastic process often
used to model the arrival of events in a system, for
example the occurrence of earthquakes in a geographical
region, or the arrival of buses at a bus stop. In a Poisson

6

process with rate parameter λ, the times between arrival
events, called the “interarrival times,” are independent
and identically distributed, and they follow an Exponen-
tial distribution with parameter λ. The number of arrivals
in an interval of length t is independent of the events in
all intervals before and after, and it is Poisson distributed
with expected value λt.

In the Poisson variant of WRE, the security parameter
is the Poisson rate parameter λ. On expectation, this
method will generate about λ + |M| search tags in
total across all plaintexts. To allocate salts for plaintext
m ∈ M and to assign their relative weights, we
sample arrivals in the interval [0, PM (m)] from a Poisson
process with rate λ. Let the number of arrival events
in the interval be N , and let their times be denoted
a1, . . . , aN . Additionally, we define a0 = 0 and aN+1 =
PM (m). The interarrival times are xi = ai − ai−1 for
i ∈ 1, . . . , N + 1.

Based on the outcome of this experiment, we allocate
N + 1 salts to plaintext m, and when we encrypt m,
we choose salt i with probability xi

PM (m) . The resulting
search tag will then have frequency equal to xi in the
encrypted database. Also note that N has a Poisson
distribution, thus on average we will allocate about
λ · PM (m) + 1 salts to plaintext m.

The pseudocode for our Poisson method’s algorithm
is shown below in Algorithm 1.

Algorithm 1 Poisson Salt Distributions

1: function GETSALTS-POISSON(PM , m, k, λ)
2: s = 0
3: E = Exponential(λ)
4: total = 0
5: while total < PM (m) do
6: s = s+ 1
7: weight[s]← Sample(E)
8: total = total + weight[s]

9: weight[s]← PM (m)− (total − weight[s])
10: S = [1, s]
11: for s ∈ S do
12: PS(s)← weight[s]

PM (m)

13: return S, PS

Security. Our analysis shows how the unique prop-
erties of the Poisson process make it ideally suited for
use in weakly randomized encryption. Most critically, the
Poisson process guarantees that, subject to one constraint
on λ, all search tag frequencies for all plaintexts are
pseudorandom samples from indistinguishable Exponen-
tial distributions. Therefore a computationally bounded

adversary learns nothing about the plaintext from the
frequencies of the ciphertexts.

Proof sketch. In the Poisson approach, the frequency
of the first salt for each plaintext is not drawn from
the same Exponential distribution as the others. To see
why this is so, notice that the Poisson process may
generate zero arrival events in the interval [0, PM (m)].
This occurs whenever the first arrival time from the
Poisson process occurs after the end of the interval; in
other words, when the first interarrival time is greater
than PM (m). Then we have only a single salt, and hence
a single ciphertext that appears in the encrypted database
with the same probability as the plaintext, PM (m).
Therefore the distribution of the first search tag fre-
quency is not in fact an Exponential; all the probability
mass that the Exponential would assign to values greater
than PM (m) is instead lumped onto the point PM (m).
We call this distribution a “capped Exponential” with
parameters λ and τ = PM (m). Figure 2 illustrates the
difference between the capped and regular Exponential
distributions.

Fig. 2: Complementary cumulative distribution for
capped versus standard Exponentials

The adversary could attempt to exploit this difference
to his advantage in the IND-CUDA game. In the extreme
case, the adversary would choose M0 with all unique
plaintexts, and choose M1 where all m ∈ M1 are the
same plaintext. With a low value of λ, the messages from
M0 in this example would all be drawn from the capped
exponential while all of the messages from M1 would
not. However, with a high enough λ in relation to the
number of messages in M0, all of the messages from M0

would be drawn from the non-capped exponential with
very high probability. The important point is to choose
an appropriate λ parameter based on the distribution you
are encrypting.

The statistical distance between the standard
7

Exponential(λ) and the capped Exponential with λ
and τ is defined in Definition 3 as one half of the
total variation distance between the two distributions.
Notice that the two distributions are identical to the
left of τ . Therefore all of the difference in distribution
comes from the upper tail of the standard Exponential,
where the capped Exponential assigns zero probability.
From the definition of the Exponential distribution, this
quantity is

∆(Exp(λ), CappedExp(λ, τ))

=Pr(X > τ |X ∼ Exp(λ))

=e−λτ

Thus the probability of the adversary distinquishing
between the capped exponential and exponential distribu-
tions is negligible in λ, which is the goal of our security
definition.

If we let τ = maxm PM (m) be the smallest plaintext
frequency, then by increasing λ relative to τ , we can
make this probability arbitrarily small. Furthermore, we
can calculate the Poisson rate parameter λ that is re-
quired to achieve a desired security parameter ω, where
ω ≤ Pr(X > τ)).

λ ≥ logω

τ

Limitations. When the adversary has the frequencies
of all search tags and knows PM , Lacharite and Paterson
[43] pointed out another possible attack, wherein the
adversary finds a set of search tags whose counts sum
up to the expected count for a (set of) target plaintext(s).
The adversary might then reasonably conclude that those
search tags all represent encryptions of the given plain-
text(s).

When the adversary targets a single plaintext, it must
solve an instance of the subset sum problem (SSP).
When targeting multiple plaintexts simultaneously, the
adversary must solve an instance of the multiple knap-
sack problem (MKP). While both problems are NP, there
exist efficient approximation algorithms, for example
[13].

However, even if the adversary can find a solution to
the computational problem, this does not guarantee that
the matching that it finds will be correct. To see that this
is true, consider the case where each search tag occurs
exactly once. Then all possible plaintext-to-search-tag
matchings give equally valid solutions to the problem,
and the adversary can do no better than random guessing.
We leave a more detailed exploration of the efficacy of
such attacks for future work. Instead, in the following

section, we present an improved WRE construction using
bucketization to eliminate the attack entirely.

1) Bucketized Poisson Random Frequencies: The
Poisson WRE approach above generated randomized
search tags for each plaintext. Doing so makes any one
search tag equally likely under all possible plaintexts, so
the adversary learns nothing by examining a single tag.
Unfortunately, that does not guarantee security against
an adversary who considers the combined frequencies
of several tags at once. In this section, we show how a
simple extension of the Poisson WRE approach, using
bucketization, can protect against the matching attacks
described in the previous section.

Figure 3 illustrates the difference in the two schemes.
In the (non-bucketized) Poisson WRE, we sample a set
of points from a Poisson process for each plaintext m,
over the interval [0, PM (m)]. We then use the inter-
arrivals between the points to determine the frequencies
of the search tags for m. This is equivalent to starting
with the set of points {FM (m) : m ∈ M} and then
sampling more points from the Poisson process over the
interval [0, 1].

In the Bucketized Poisson approach, we omit the
points from FM (m), and we simply sample from the
Poisson process, independent of the plaintext frequen-
cies. As a result, some inter-arrival intervals will overlap
with the intervals for more than one plaintext. Notice that
in Figure 3 with the bucketized construction, the tag t3
can represent either plaintext m1 or m2.

The Bucketized Poisson also makes a slight modifica-
tion to the encryption and search algorithms from Figure
1. Instead of inputting the plaintext appended to a salt
to the PRF, just the salt is given.
• Enc: on input keys k0, k1, security parameter X ,

plaintext distribution PM and a message m, choose
a uniform salt
(S, SM)← getSalts(PM ,X)}
s

$← sample(S(m), SM (m))
Output the (search tag, ciphertext):

(t, c)←
(
Fk1(s), Enc′k0(m)

)
• Search: on input keys k0, k1, parameter X , and a

message m, let (S, SM)← getSalts(PM ,X)} s =
S(m). Output search query for

q ← Tt = Fk1(s1)∨Tt = Fk1(s2)∨...∨Tt = Fk1(s|s|)

This additional ambiguity completely removes the
small advantage that an adversary might obtain from
the imperfection of the capped exponential distribution.
It also negates any kind of frequency-based matching

8

Fig. 3: Poisson Search Tag Frequency Example

attack, because the tag frequencies and the plaintext
frequencies are independent. The downside is that with
the bucketized WRE, query results will contain a small
number of false positives. The false positive rate is con-
trolled by parameter λ: increasing λ (thus decreasing the
expected frequency of each tag) decreases the expected
number of false positives.

Theorem V.1 (Single-Column Security for Bucketized
Poisson WRE). A Bucketized Poisson WRE scheme with
parameters (λ, n0, n1), is IND-CUDA secure.

Proof sketch. With the Bucketized Poisson algorithm,
the actual ciphertext search tags will have exactly the
same values and the same frequency, no matter which
M0 or M1 is encrypted. The only difference will be
the ordering of these search tags. Since the ordering is
determined by the output of a pseudo-random shuffle,
the adversary cannot learn anything from this ordering
either. The security of this construction also does not
depend on λ like the first Poisson approach. The λ value
will affect the false positive rate and performance, but
not the security.

VI. PERFORMANCE EVALUATION

We implemented several flavors of weakly randomized
encryption, including the fixed salts method and Poisson
salt allocation, in the Haskell programming language. To
evaluate the performance of our prototype on realistic
data and queries at a variety of scales, we used the
SPARTA [48] framework from MIT-LL.

The SPARTA test framework includes a data generator
and a query generator. The data generator builds artificial
data sets with realistic statistics based on real data
from the US Census and Project Gutenberg. The query
generator creates queries for this test database based on
the desired query types and number of return results.

Algorithm 2 Bucketized Poisson

1: function GETSALTS-POISSON(PM ,M ,m, k, λ)
2: s = 0
3: wordFr = [], salts = []
4: E = Exponential(λ)
5: total = 0
6: while total < 1.0 do
7: s = s+ 1
8: weight[s]

$← Sample(E)
9: total = total + weight[s]

10: weight[s]← 1.0− (total − weight[s])
11: M ′ ← PRS(M)
12: fr = PM (m′1) + ...PM (m′x−1) where m = m′x
13: i = 0, cdf = 0
14: while cdf < fr do
15: cdf = cdf + weights[i]
16: i = i+ 1

17: weights[i] = cdf − fr
18: cdf = fr
19: while cdf < (fr + PM (m)) do
20: wordFr.append

(
weights[i]

fr

)
21: salts.append(i)
22: i = i+ 1
23: cdf ← cdf + weights[i]

24: if cdf > (fr + PM (m)) then
25: dif ← (fr + PM (m))− cdf
26: wordFr.append

(
weights[i]−dif

fr

)
27: salts.append(i)

return (salts, wordFr)

A. Experimental Setup

We used the database generator to generate databases
with 100,000 records, 1 million records and 10 mil-
lion records. We generated over 1,000 queries for each
database, consisting of a mix of queries that returned
result sizes between 1 and 10,000 records.

We encrypted the columns fname, lname, ssn,
city, and zip with WRE. The rest of the SPARTA
columns were inserted into the test database in plaintext.

Each encrypted column is expanded into two columns:
one 64 bit Integer column for the WRE search tag and
another column to hold the (strongly randomized) AES-
encrypted data. The plaintext table contains 23 columns.
Therefore the ciphertext table contains the 23 encrypted
data columns, plus the 5 additional search tag columns.

We tested the performance of the fixed salt method
with 100 and 1,000 salts, and we tested Poisson salt
allocation using λ of 100, 1,000, and 10,000.

9

We performed the tests with the client and the database
server located on the same local network via a 1 Gbps
Ethernet switch. The server has 12 CPU cores (dual
Xeon E5645), 64GB of RAM, and an array of 10k RPM
hard drives. It runs the Ubuntu Server 14.04 operating
system and Postgres 9.6 as the DBMS.

B. Experimental Results

Ciphertext Expansion. Table I shows the overall
ciphertext expansion, including the ciphertext expansion
from the AES encrypted data, the additional search
tag columns and the additional indexes on the search
columns. Note that the number of salts used and whether
a fixed salt or a Poisson Salt Distribution do not affect
the database size. The database ciphertext expansion
is directly related to the number and type of columns
encrypted

Encryption Type DB Size DB + Indexes Size
100k Plaintext 112 MB 136 MB

100k Encrypted 156 MB 244 MB
1M Plaintext 1116 MB 1365 MB

1M Encrypted 1558 MB 2447 MB
10M Plaintext 11 GB 13 GB

10M Encrypted 15 GB 24 GB

TABLE I: Ciphertext Expansion

Database Creation. Inserting 10 million plaintext
records took a total 6,356 seconds on average. Inserting
10 million ciphertext records took 58,604 seconds on
average. Because the database must only be initialized
once, the practical impact of this 9x slowdown is not
especially significant for most applications. Also, we
believe that with a little effort, the performance of
our un-optimized implementation could be improved
substantially.

Query Runtime. We performed two variations of each
SPARTA-generated query. The first variation takes the
form SELECT ID from main where Since column
ID is the primary key, these queries only require that
the DBMS scan the indexes to find the list of matching
records. The second variation takes the form SELECT
* from main where This selects the entire record,
and thus requires retrieving the encrypted records from
storage and transferring them across the network. The
time shown for each query includes the time to compute
the encrypted query.

Since caching can have a big impact on database
performance, we ran each set of queries under two
scenarios. In the first scenario we cleared the caches
in the OS and in the Postgres database before running

each query. To clear the Postgres cache, we restarted
Postgres. To clear the OS cache, we ran the following:

echo 3 > /proc/sys/vm/drop_caches

In the other scenario, the cache was left alone.
Figures 4 and 5 display tests run with a cold cache.

Figures 6 and 7 have the results of the warm cache
tests. The results of these experiments show that the
WRE schemes achieve query response times with our
Poisson Random Frequency construction within 27% of
plaintext database response times on equality queries. As
expected, as the number of unique search tags increases,
so does the query response time. Across all of our
experimental configurations, the Fixed Salt scheme with
1000 salts is slower than the Poisson construction with
λ = 1000, and similarly, the Poisson with λ = 1000
performs slightly slower than Poisson with λ = 100.
This result is not surprising, since the Fixed Salt tech-
nique generates 1000 tags for each plaintext, while the
λ = 1000 results in λ+ |M | tags for the entire column.

Bucketized Poisson False Positives. In section V-C1,
we mentioned that the Bucketized Poisson algorithm
may result in false positives in the search result. Figures
8 and 9 show the false positives introduced on the
SPARTA queries used in our performance evaluation.
The X axis shows the number of records returned for
each query with Poisson salt allocation, which does
not introduce false positives. The Y axis shows the
number of records returned for the same queries with
the bucketized version of the algorithm.

With lower values of λ, the Bucketized Poisson algo-
rithm appears to mask the true number of return results.
In Figure 9, with λ = 10, 000, we see some correlation
between the number of matching records in the database
and the number of ciphertext records that match the
bucketized query. However, in Figure 8 with λ = 1000,
the relationship is much weaker. In the future, this
masking might be leveraged to prevent reconstruction
attacks [35], [38], where an adversary uses access pattern
leakage to recover the contents of the database.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA)
and Space and Naval Warfare Systems Center, Pacific
(SSC Pacific) under Contract No. N66001-15-C-4070.
Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of DARPA or
SSC Pacific.

10

Reset Cache Before Each Query

Fig. 4: “SELECT ID” Equality Fig. 5: “SELECT *” Equality

Warm Cache - No Cache Reset

Fig. 6: “SELECT ID” Equality Fig. 7: “SELECT *” Equality

Fig. 8: Bucketized Poisson False Positive (λ = 1000)
Fig. 9: Bucketized Poisson False Positive

(λ = 10, 000)

11

REFERENCES

[1] “Always encrypted (database engine),” https://docs.microsoft.
com/en-us/sql/relational-databases/security/encryption/
always-encrypted-database-engine, accessed: 2017-10-31.

[2] “A graduate course in applied cryptography,” http://toc.
cryptobook.us/, accessed: 2018-5-1.

[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in SIGMOD, 2004, pp. 563–574.

[4] G. Amanatidis, A. Boldyreva, and A. O’Neill, “Provably-Secure
Schemes for Basic Query Support in Outsourced Databases.”
in DBSec, ser. Lecture Notes in Computer Science, S. Barker
and G.-J. Ahn, Eds., vol. 4602. Springer, 2007, pp.
14–30. [Online]. Available: http://dblp.uni-trier.de/db/conf/
dbsec/dbsec2007.html#AmanatidisBO07;http://dx.doi.org/10.
1007/978-3-540-73538-0 2;http://www.bibsonomy.org/bibtex/
294c62ccd6e81c58c00817ce4cb858e60/dblp

[5] G. Asharov, M. Naor, G. Segev, and I. Shahaf, “Searchable
symmetric encryption: Optimal locality in linear space via two-
dimensional balanced allocations,” in Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing. ACM,
2016, pp. 1101–1114.

[6] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and
Efficiently Searchable Encryption,” in CRYPTO, 2007, pp. 535–
552.

[7] T. Boelter, R. Poddar, and R. A. Popa, “A secure one-roundtrip
index for range queries,” Cryptology ePrint Archive, Report
2016/568, 2016, https://eprint.iacr.org/2016/568.

[8] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill, “Order-
preserving symmetric encryption,” in EUROCRYPT, 2009, pp.
224–241.

[9] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving
encryption revisited: improved security analysis and alternative
solutions,” in CRYPTO, 2011, pp. 578–595.

[10] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and
J. Zimmerman, “Semantically secure order-revealing encryption:
Multi-input functional encryption without obfuscation.” in
EUROCRYPT (2), ser. Lecture Notes in Computer Science,
E. Oswald and M. Fischlin, Eds., vol. 9057. Springer, 2015,
pp. 563–594. [Online]. Available: http://dblp.uni-trier.de/db/conf/
eurocrypt/eurocrypt2015-2.html#BonehL0SZZ15

[11] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-Abuse
Attacks Against Searchable Encryption.” in ACM Conference
on Computer and Communications Security, I. Ray, N. Li, and
C. Kruegel, Eds. ACM, 2015, pp. 668–679. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ccs/ccs2015.html#CashGPR15

[12] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk,
M.-C. Rosu, and M. Steiner, “Dynamic Searchable Encryption
in Very-Large Databases: Data Structures and Implementation.”
in NDSS. The Internet Society, 2014. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/ndss/ndss2014.html#CashJJJKRS14

[13] C. Chekuri and S. Khanna, “A polynomial time approximation
scheme for the multiple knapsack problem,” SIAM Journal on
Computing, vol. 35, no. 3, pp. 713–728, 2005.

[14] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu, “Practical
order-revealing encryption with limited leakage,” in International
Conference on Fast Software Encryption. Springer, 2016, pp.
474–493.

[15] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Search-
able Symmetric Encryption: Improved Definitions and Efficient
Constructions,” in CCS, 2006, pp. 79–88.

[16] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis,
and M. Garofalakis, “Practical private range search revisited,” in
Proceedings of the 2016 International Conference on Manage-
ment of Data. ACM, 2016, pp. 185–198.

[17] I. Demertzis and C. Papamanthou, “Fast searchable encryption
with tunable locality,” in Proceedings of the 2017 ACM Interna-

tional Conference on Management of Data. ACM, 2017, pp.
1053–1067.

[18] F. B. Durak, T. M. DuBuisson, and D. Cash, “What else
is revealed by order-revealing encryption?” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16. New York, NY,
USA: ACM, 2016, pp. 1155–1166. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978379

[19] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M.-C. Rosu,
and M. Steiner, “Rich queries on encrypted data: Beyond exact
matches,” 2015, pp. 123–145.

[20] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and
A.-R. Sadeghi, “Hardidx: practical and secure index with sgx,”
in IFIP Annual Conference on Data and Applications Security
and Privacy. Springer, 2017, pp. 386–408.

[21] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in STOC, 2009, pp. 169–169.

[22] E.-J. Goh, “Secure Indexes.” IACR Cryptology ePrint
Archive, vol. 2003, p. 216, 2003. [Online]. Available:
http://dblp.uni-trier.de/db/journals/iacr/iacr2003.html#Goh03;
http://eprint.iacr.org/2003/216;http://www.bibsonomy.org/bibtex/
235b9c14f05f89b78a4e03253222c786b/dblp

[23] O. Goldreich, “Towards a theory of software protection
and simulation by oblivious rams,” in STOC, A. V. Aho,
Ed. ACM, 1987, pp. 182–194. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/stoc/stoc87.html#Goldreich87

[24] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal
of computer and system sciences, vol. 28, no. 2, pp. 270–299,
1984.

[25] P. Grofig, M. Hrterich, I. Hang, F. Kerschbaum, M. Kohler,
A. Schaad, A. Schrpfer, and W. Tighzert, “Experiences and
observations on the industrial implementation of a system to
search over outsourced encrypted data.” in Sicherheit, ser. LNI,
S. Katzenbeisser, V. Lotz, and E. R. Weippl, Eds., vol. 228.
GI, 2014, pp. 115–125. [Online]. Available: http://dblp.uni-trier.
de/db/conf/sicherheit/sicherheit2014.html#GrofigHHKKSST14

[26] P. Grubbs, “On deploying property-preserving encryption,” 2016,
real World Cryptography. [Online]. Available: https://drive.
google.com/file/d/0Bzm 4XrWnl5zWndfZTVsRkpyWm8/view

[27] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and
V. Shmatikov, “Breaking web applications built on top of
encrypted data.” IACR Cryptology ePrint Archive, vol. 2016,
p. 920, 2016. [Online]. Available: http://dblp.uni-trier.de/db/
journals/iacr/iacr2016.html#GrubbsMNRS16

[28] P. Grubbs, T. Ristenpart, and V. Shmatikov, “Why your encrypted
database is not secure,” Cryptology ePrint Archive, Report
2017/468, 2017, http://eprint.iacr.org/2017/468.

[29] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and
T. Ristenpart, “Leakage-abuse attacks against order-revealing
encryption,” in 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017, 2017, pp.
655–672. [Online]. Available: https://doi.org/10.1109/SP.2017.44

[30] F. Hahn and F. Kerschbaum, “Poly-logarithmic range queries on
encrypted data with small leakage,” in Proceedings of the 2016
ACM on Cloud Computing Security Workshop. ACM, 2016, pp.
23–34.

[31] W. He, D. Akhawe, S. Jain, E. Shi, and D. X. Song,
“ShadowCrypt: Encrypted Web Applications for Everyone.” in
ACM Conference on Computer and Communications Security,
G.-J. Ahn, M. Yung, and N. Li, Eds. ACM, 2014, pp.
1028–1039. [Online]. Available: http://dblp.uni-trier.de/db/conf/
ccs/ccs2014.html#HeAJSS14

[32] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu, “Secure
multidimensional range queries over outsourced data,” The VLDB
JournalThe International Journal on Very Large Data Bases,
vol. 21, no. 3, pp. 333–358, 2012.

12

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine
http://toc.cryptobook.us/
http://toc.cryptobook.us/
http://dblp.uni-trier.de/db/conf/dbsec/dbsec2007.html#AmanatidisBO07; http://dx.doi.org/10.1007/978-3-540-73538-0_2; http://www.bibsonomy.org/bibtex/294c62ccd6e81c58c00817ce4cb858e60/dblp
http://dblp.uni-trier.de/db/conf/dbsec/dbsec2007.html#AmanatidisBO07; http://dx.doi.org/10.1007/978-3-540-73538-0_2; http://www.bibsonomy.org/bibtex/294c62ccd6e81c58c00817ce4cb858e60/dblp
http://dblp.uni-trier.de/db/conf/dbsec/dbsec2007.html#AmanatidisBO07; http://dx.doi.org/10.1007/978-3-540-73538-0_2; http://www.bibsonomy.org/bibtex/294c62ccd6e81c58c00817ce4cb858e60/dblp
http://dblp.uni-trier.de/db/conf/dbsec/dbsec2007.html#AmanatidisBO07; http://dx.doi.org/10.1007/978-3-540-73538-0_2; http://www.bibsonomy.org/bibtex/294c62ccd6e81c58c00817ce4cb858e60/dblp
https://eprint.iacr.org/2016/568
http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2015-2.html#BonehL0SZZ15
http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2015-2.html#BonehL0SZZ15
http://dblp.uni-trier.de/db/conf/ccs/ccs2015.html#CashGPR15
http://dblp.uni-trier.de/db/conf/ndss/ndss2014.html#CashJJJKRS14
http://dblp.uni-trier.de/db/conf/ndss/ndss2014.html#CashJJJKRS14
http://doi.acm.org/10.1145/2976749.2978379
http://dblp.uni-trier.de/db/journals/iacr/iacr2003.html#Goh03; http://eprint.iacr.org/2003/216; http://www.bibsonomy.org/bibtex/235b9c14f05f89b78a4e03253222c786b/dblp
http://dblp.uni-trier.de/db/journals/iacr/iacr2003.html#Goh03; http://eprint.iacr.org/2003/216; http://www.bibsonomy.org/bibtex/235b9c14f05f89b78a4e03253222c786b/dblp
http://dblp.uni-trier.de/db/journals/iacr/iacr2003.html#Goh03; http://eprint.iacr.org/2003/216; http://www.bibsonomy.org/bibtex/235b9c14f05f89b78a4e03253222c786b/dblp
http://dblp.uni-trier.de/db/conf/stoc/stoc87.html#Goldreich87
http://dblp.uni-trier.de/db/conf/stoc/stoc87.html#Goldreich87
http://dblp.uni-trier.de/db/conf/sicherheit/sicherheit2014.html#GrofigHHKKSST14
http://dblp.uni-trier.de/db/conf/sicherheit/sicherheit2014.html#GrofigHHKKSST14
https://drive.google.com/file/d/0Bzm_4XrWnl5zWndfZTVsRkpyWm8/view
https://drive.google.com/file/d/0Bzm_4XrWnl5zWndfZTVsRkpyWm8/view
http://dblp.uni-trier.de/db/journals/iacr/iacr2016.html#GrubbsMNRS16
http://dblp.uni-trier.de/db/journals/iacr/iacr2016.html#GrubbsMNRS16
http://eprint.iacr.org/2017/468
https://doi.org/10.1109/SP.2017.44
http://dblp.uni-trier.de/db/conf/ccs/ccs2014.html#HeAJSS14
http://dblp.uni-trier.de/db/conf/ccs/ccs2014.html#HeAJSS14

[33] B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving index
for range queries,” in Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30. VLDB Endow-
ment, 2004, pp. 720–731.

[34] S. Kamara, “Encrypted search.” ACM Crossroads, vol. 21, no. 3,
pp. 30–34, 2015. [Online]. Available: http://dblp.uni-trier.de/db/
journals/crossroads/crossroads21.html#Kamara15

[35] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic
Attacks on Secure Outsourced Databases.” in ACM Conference
on Computer and Communications Security, E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi,
Eds. ACM, 2016, pp. 1329–1340. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ccs/ccs2016.html#KellarisKNO16

[36] F. Kerschbaum and A. Tueno, “An efficiently searchable
encrypted data structure for range queries,” arXiv preprint
arXiv:1709.09314, 2017.

[37] M.-S. Lacharite and K. G. Paterson, “Frequency-smoothing
encryption: preventing snapshot attacks on deterministically-
encrypted data,” Cryptology ePrint Archive, Report 2017/1068,
2017, https://eprint.iacr.org/2017/1068.

[38] M. Lacharit, B. Minaud, and K. G. Paterson, “Improved recon-
struction attacks on encrypted data using range query leakage,”
in 2018 IEEE Symposium on Security and Privacy (SP), May
2018, pp. 297–314.

[39] B. Lau, S. P. Chung, C. Song, Y. Jang, W. Lee, and
A. Boldyreva, “Mimesis Aegis: A Mimicry Privacy Shield-
A System’s Approach to Data Privacy on Public Cloud.”
in USENIX Security Symposium, K. Fu and J. Jung, Eds.
USENIX Association, 2014, pp. 33–48. [Online]. Available:
http://dblp.uni-trier.de/db/conf/uss/uss2014.html#LauCSJLB14

[40] K. Lewi and D. J. Wu, “Order-Revealing Encryption: New
Constructions, Applications, and Lower Bounds.” in ACM
Conference on Computer and Communications Security, E. R.
Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, Eds. ACM, 2016, pp. 1167–1178. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ccs/ccs2016.html#LewiW16

[41] M. Naveed, S. Kamara, and C. V. Wright, “Inference Attacks on
Property-Preserving Encrypted Databases.” in ACM Conference
on Computer and Communications Security, I. Ray, N. Li, and
C. Kruegel, Eds. ACM, 2015, pp. 644–655. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ccs/ccs2015.html#NaveedKW15

[42] O. Pandey and Y. Rouselakis, “Property preserving symmetric
encryption.” in EUROCRYPT, ser. Lecture Notes in Computer
Science, D. Pointcheval and T. Johansson, Eds., vol. 7237.
Springer, 2012, pp. 375–391. [Online]. Available: http://dblp.
uni-trier.de/db/conf/eurocrypt/eurocrypt2012.html#PandeyR12

[43] K. Paterson and M.-S. Lacharité, Personal communication, De-
cember 2017.

[44] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan, “CryptDB: protecting confidentiality with
encrypted query processing.” in SOSP, T. Wobber and
P. Druschel, Eds. ACM, 2011, pp. 85–100. [Online]. Available:
http://dblp.uni-trier.de/db/conf/sosp/sosp2011.html#PopaRZB11

[45] D. Pouliot and C. V. Wright, “The Shadow Nemesis:
Inference Attacks on Efficiently Deployable, Efficiently
Searchable Encryption.” in ACM Conference on Computer
and Communications Security, E. R. Weippl, S. Katzen-
beisser, C. Kruegel, A. C. Myers, and S. Halevi,
Eds. ACM, 2016, pp. 1341–1352. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ccs/ccs2016.html#PouliotW16

[46] D. Song, D. Wagner, and A. Perrig, “Practical Techniques for
Searching on Encrypted Data,” in S&P, 2000, pp. 44–55.

[47] E. Stefanov and E. Shi, “Oblivistore: High performance oblivious
cloud storage.” in IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2013, pp. 253–267. [Online]. Available:
http://dblp.uni-trier.de/db/conf/sp/sp2013.html#StefanovS13

[48] M. Varia, B. Price, N. Hwang, A. Hamlin, J. Herzog, J. Poland,
M. Reschly, S. Yakoubov, and R. K. Cunningham, “Automated
Assessment of Secure Search Systems,” SIGOPS Oper. Syst.
Rev., vol. 49, no. 1, pp. 22–30, Jan. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2723872.2723877

[49] J. Wang and X. Du, “A secure multi-dimensional partition
based index in das.” in APWeb, ser. Lecture Notes in Computer
Science, Y. Zhang, G. Yu, E. Bertino, and G. Xu, Eds., vol.
4976. Springer, 2008, pp. 319–330. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/apweb/apweb2008.html#WangD08

[50] L. Wang, P. Grubbs, J. Lu, V. Bindschaedler, D. Cash,
and T. Ristenpart, “Side-channel attacks on shared search
indexes.” in IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2017, pp. 673–692. [Online]. Available:
http://dblp.uni-trier.de/db/conf/sp/sp2017.html#WangGLBCR17

[51] C. V. Wright and D. Pouliot, “Early detection and analysis of
leakage abuse vulnerabilities,” Cryptology ePrint Archive, Report
2017/1052, 2017, http://eprint.iacr.org/2017/1052.

13

http://dblp.uni-trier.de/db/journals/crossroads/crossroads21.html#Kamara15
http://dblp.uni-trier.de/db/journals/crossroads/crossroads21.html#Kamara15
http://dblp.uni-trier.de/db/conf/ccs/ccs2016.html#KellarisKNO16
https://eprint.iacr.org/2017/1068
http://dblp.uni-trier.de/db/conf/uss/uss2014.html#LauCSJLB14
http://dblp.uni-trier.de/db/conf/ccs/ccs2016.html#LewiW16
http://dblp.uni-trier.de/db/conf/ccs/ccs2015.html#NaveedKW15
http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2012.html#PandeyR12
http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2012.html#PandeyR12
http://dblp.uni-trier.de/db/conf/sosp/sosp2011.html#PopaRZB11
http://dblp.uni-trier.de/db/conf/ccs/ccs2016.html#PouliotW16
http://dblp.uni-trier.de/db/conf/sp/sp2013.html#StefanovS13
http://doi.acm.org/10.1145/2723872.2723877
http://dblp.uni-trier.de/db/conf/apweb/apweb2008.html#WangD08
http://dblp.uni-trier.de/db/conf/apweb/apweb2008.html#WangD08
http://dblp.uni-trier.de/db/conf/sp/sp2017.html#WangGLBCR17
http://eprint.iacr.org/2017/1052

	Introduction
	The Importance of Deployability
	Contributions

	Related Work
	Security Definitions
	Weakly Randomized Encryption
	WRE Schemes
	Fixed Salts Method
	Proportional Salts Method
	Poisson Random Frequencies
	Bucketized Poisson Random Frequencies

	Performance Evaluation
	Experimental Setup
	Experimental Results

	Acknowledgements
	References

