Non-Interactive Threshold Mercurial Signatures
with Applications to Threshold DAC

Abstract. In a mercurial signature, a signer signs a representative m
of an equivalence class of messages on behalf of a representative pk of
an equivalence class of public keys, receiving the signature o. One can
then transform o into a signature o’ on an equivalent (to m) message
m’ under an equivalent (to pk) public key pk’. Mercurial signatures are
helpful in constructing delegatable anonymous credentials: their privacy
properties enable straightforward randomization of a credential chain,
hiding the identity of each signer while preserving the authenticity of
the overall credential.

Unfortunately, without trusted setup, known constructions of mer-
curial signatures satisfy only a weak form of this privacy property. Specifi-
cally, an adversary who is responsible for a link in a delegation chain—and
thus knows its corresponding secret key—will be able to recognize this
link even after the chain has been randomized.

To address this issue, Abe et al. (Asiacrypt 2024) proposed (inter-
active) threshold mercurial signatures (TMS), which remove the reliance
on a single trusted signer by distributing the signing capability among
multiple parties, none of whom knows the signing key. However, this
contribution was far from practical, as it required the signers to interact
with each other during the signing process.

In this work, we define and realize non-interactive TMS, where each
participant non-interactively computes its contribution to the threshold
mercurial signature. Our construction also substantially reduces the over-
all communication complexity. It uses the mercurial signature scheme of
Mir et al. (CCS 2023) as a starting point. Further, we introduce thresh-
old delegatable anonymous credentials (TDAC) and use a non-interactive
TMS to construct them.

1 Introduction

In the digital era, services that preserve user anonymity are increasingly impor-
tant. Without them, ordinary people are in danger of surveillance by powerful
entities such as governments, corporations, or hackers. A useful tool for providing
privacy while maintaining service integrity (i.e., authorizing only certain users)
is anonymous credentials. They were first described by Chaum |Cha85|, first re-
alized by Camenisch and Lysyanskaya |[CL04|, and then improved and extended
in many subsequent works [CKL™16,/CDHK15|. Anonymous credentials allow a
user to prove in zero-knowledge that they know a signature without supplying it
in the clear. They are, seemingly, the perfect answer to legislative efforts towards
privacy-preserving digital identity, such as the EU’s Digital Identity Wallet reg-
ulation (EUDIW) |eID24, BBH"24|. The EUDIW requires that EU citizens be
able to selectively prove certain information about themselves while protecting
other details.

For example, an EUDIW holder should be able to prove EU citizenship with-
out revealing which EU country they are a citizen of. A governing body such
as the EU may want to delegate its signing power to smaller regions, such as
member countries. In this case, it is important to still preserve the privacy of
end users’ identity attributes, such as which EU country they are from. This
challenge is addressed by delegatable anonymous credentials (DACs), introduced
and first realized by Chase and Lysyanskaya |[CL06]. DACs allow a root issuer
to delegate issuing power to multiple delegatees, each of whom can then issue
credentials to users without further interaction with the root. Users can present
their credentials without revealing which delegatee issued them.

DACs can be realized efficiently and modularly with mercurial signatures, a
scheme introduced by Crites and Lysyanskaya |[CL19| that allows keys, messages,
and signatures to be randomized. Using this in the context of DAC lets the public
keys of delegated signers be randomized, thereby hiding the identity of the inter-
mediate signer while still proving the user holds a credential from a trusted root
issuer. Since their introduction, mercurial signatures have attracted significant
research attention |[CL21,|CLPK22, MBG™23|[PM23,|ANPKT24, GLM™24b].

Threshold signatures [Des88,[DF90] are another powerful tool for credential
schemes, as they allow the distribution of authority between signers. The notion
of threshold privacy-preserving credentials has been explored in a number of
works [SABT19,DKL™23|. Thresholdizing a mercurial signatures can strengthen
both anonymity and unforgeability [ANPKT24]. In particular, if we assume non-
collusion among the parties holding the thresholdized keys (so no adversary holds
more than ¢ — 1 shares), threshold mercurial signatures can provide a stronger
notion of privacy. We review this in more detail in Section .

This motivates the need for a threshold mercurial signature (TMS) scheme
to provide anonymous credentials with distributed signing power. Thresholdized
mercurial signatures were first introduced in [ANPKT24| and used to construct
mix-nets in JANO™25|. However, no known TMS scheme is non-interactive; all
existing constructions currently require interaction between the signers to pro-
duce a signature. This raises the following question:

Can we design a non-interactive threshold mercurial signature scheme?

In this work, we answer this question in the affirmative by formally defining
and constructing the first such scheme. We then extend it to realize the first
threshold delegatable anonymous credentials (TDAC) scheme.

1.1 Owur Contributions

In this work, we study efficient constructions of threshold mercurial signa-
tures and their application to threshold delegatable anonymous credentials. Our
main contributions are as follows.

— We construct the first non-interactive threshold mercurial signature scheme.
Our construction builds on the mercurial signature of Mir et al. [MBG™23]
which is itself based on the structure-preserving signature of Ghadafi [Ghal6|.

— We further extend the construction in [MBG™23| to support the signing of
public keys, overcoming a key limitation in the original scheme that prevented

its use in DAC. Thus, we achieve the first non-interactive, non-transferable
threshold DAC scheme from mercurial signatures.

Threshold DAC was previously studied by Mir et al. in [MSM24], but their
construction requires an extra round during showing (due to commitments
needed for proving correct encryption). Moreover, the scheme does not enforce
non-transferability—the property preventing users from maliciously sharing
credentials—which is an implicit requirement for anonymous credentials [CLO1].
In general, non-transferability is achieved by signing user public keys, enabling
users to prove their identity. Since [MSM24| supports only attribute signing,
their construction cannot bind credentials to public keys, and thus cannot
prevent malicious credential transfer.

Our construction relies on the generic group model (GGM) [Sho97]. Con-
structing mercurial signatures is known to at least require non-interactive as-
sumptions [BFR24|, and many constructions use generic or algebraic group mod-
els [MBG™23,/CL19,ANPKT24,|GLM™24b, CL21|.

In Table [I, we compare our mercurial signature to related constructions.
The closest work to ours is Mir et al. [MBG™23|, and we highlight the dif-
ferences. In particular, our construction supports thresholdization and DAC
where [MBG™23| did not. Supporting DAC increases the size of public keys

from [MBG™23|.
Schemes [JCL19] | [GLMT24b| [[ANPKT24|] [MBGT23][Ours (Figure[4)
[pp| 0(1%) [46(|G1| +1G2D)| 0(1Y) o@1?) oa”)
|pk| £-(|Ga]) | 2£-(|Gs]) €-(IG2]) | £-(IG2]) [£-(G2| +2[Gi])TT
[o] 3 - [G4] 3 [G4] 3 [G4] 3 [G4] 3 - [Gq]
O (Verify) (C+3)-e] (5+3)-e (C+3)-e [(40+3) e (40+3) - e
Threshold X X v x T v
Non-interactive| N/A¥ N/A* X v v
Supports DAC v v v X v

Table 1: Concrete parameter comparison.

£ denotes the length of signable messages. “non-interactive” denotes issuers do not need to interact
to each other for a signature to be combined. A non-constant |pp| (beyond the security parameter)
implies trusted setup (any non-trusted setup can be sampled in the ROM). O(Verify) is the complexity
of signature verification and X - e indicates that X pairings must to be computed.

f This scheme supports aggregation, but not t-out-of-n thresholdization.

* It is trivial for schemes where signatures are not thresholdized or aggregated to be non-interactive.
™ The extra key size allows for DAC to be constructed from this signature. For only thresholdization,
the key size is the same as [MBG™23].

1.2 Technical Overview

Our threshold mercurial signature takes the approach of Crites et al. [CKPT23|
to thresholdize the secret key using Shamir secret sharing [Sha79|. This approach
relies on certain homomorphic properties of the underlying signature scheme.
Specifically, for two valid keys-signatures pairs (pk, o) and (pk’, o’), the product
o % ¢’ is a valid signature under the public key pk * pk’. Such key-homomorphic
signatures are studied in depth by [DS19).

Our scheme is based on the key-homomorphic signature construction in
|MBG+23 In this construction, a messag (M, N) with M = (M, Ms) and
a ta T = (Ty,T) are signed under a secret key sk = {ski}ie[s) to produce a
signature o = (h,b,s) = (h, TTS | b M*2 M5*#), where h is a hash of the
tag and message. The latter two parts of the signature are key-homomorphic,
since b- b = Tfk‘“_SI(:‘T;’k‘r’—irsw5 and s - ' = hskatsk Mfk2+5k/2M25k3+5ki°’. So, as long
as h = b/, T; = T}, and M; = M/, the product of two signatures is equivalent
to a signature under the sum of the two secret keys, sk and sk’. We exploit this
property to construct threshold signatures. A complete secret key sk = {sk; };¢s)
is shared using Shamir secret sharing into n shares ({sk;;}icn),je[s))- For all
j € [5] and ¥ C [n] satisfying |T| = t for a threshold ¢,), < Xi xsk;; = sk,
where A; ¢ is the Lagrange coefficient for party ¢ in . By leveraging the signa-
ture’s homomorphic properties, we can combine any set ¢ of partial signatures
into into a single signature that verifies under the original public key.

The intuition behind our second contribution (adapting [MBG™23| to sup-
port the signing on public keys) is more subtle. For public keys to be signable,
they have to be adapted to fit the message space. The challenge is that, in the
original scheme, messages span both source groups, while public keys lie only in
the second source group. Thus, signing a public key means extending it with
extra elements in the first source group. In [MBG™23|, a public key takes the
form pk = {I:’Ski}ie[g,] where P is the generator for the second source group.
A naive approach for extending this key might try revealing pk’ = {PSki}ie[E,]
(where P is the generator of the first source group), but this allows the compu-
tation of o* = (h* = P b* = Pske psks g* — pska psks) which is a forgery of
the message (M* = (P, P),N* = (P, P)).

Fortunately, when these elements of the public key in the first source group
are structured similar to messages and tags, we can prove the scheme to be
unforgeable. By revealing: pk’ = (T4, -+ ,T5, My,--- , Ms) where T; = h”¢ and
M; = (T;)*, we find that we can sign public keys using these additional ele-
ments. Furthermore, we prove in the generic group model that a forgery on this
extended public key constitutes a forgery on the original scheme of [MBG™23].
This proof is highly non-trivial and requires that these extra elements can effec-
tively be “simulated” by the reduction without knowing the secret key, which we
prove in the GGMH Finally, we generalize the scheme so that arbitrary length

—

vectors (M = (M, -+, Mpy)) can be signed.

1.3 Related Work

Anonymous Credentials. Anonymous credentials (ACs) are finding more ap-
plications in recent years, like the EU’s Digital Identity Wallet regulation (EU-

! IMBG™23] uses bilinear source groups G; and Gz generated by P and P respectively

2 The N vector is not important for explaining the key-homomorphic properties of the
scheme, so we leave an explaination of this to later in our paper.

3 Tags were added to support randomization properties. Intuitively, tags can be
thought of as part of the message.

4 We describe this reduction in the proofs of unforgeability and hiding of Theorems |§|

and E

DIW) |BBH"24], ISO’s group signatures |[[SO13], TCG’s Direct Anonymous
Attestation protocols [TCG19|, and W3C’s Decentralized Identifiers [W3C22].
Several implementations and specifications have emerged, such as Hyperledger
AnonCreds [HYP23|, Microsoft’s uProve [PZ13|, and IBM’s idemix [CH02|. Del-
egatable anonymous credentials (DACs) were first realized by Chase and Lysyan-
skaya |[CLO6| but were not made efficient for long chains until the work of Be-
lenkiy et al. [BCCT09|, which relied on Groth-Sahai proofs [GS08]. Since Groth-
Sahai proofs are often considered inefficient, Crites and Lysyanskaya |[CL19] re-
cently introduced the notion of mercurial signatures as a more practical founda-
tion for constructing efficient DACs.

Threshold Credentials. Threshold signatures have seen extensive use in
blockchain technology due to their distributed nature [Nak09, MXC™16]
YMR ™19, GGN16,[PCCY22|. A threshold signature scheme is parameterized by
two integers, n and t, in addition to the security parameter. The signing key
is divided into n shares, which are typically distributed among n parties that
do not fully collude. During signing, ¢ of these parties must come together with
their shares and interact to produce a signature. Security requires that n —t 41
parties are honest. In this case, a malicious party controls at most ¢ — 1 shares,
and thereby cannot forge a signature. Threshold signatures are also useful in
multi-factor authentication [FLL25|, where the key used to show a signature is
shared across multiple devices.

Mercurial Signatures. Mercurial signatures were introduced in [CL19] as
a combination of equivalence classes on messages |[FHS19| and equivalence
classes on public keys |[BHKS18|. Mercurial signatures belong to a broader
family of schemes with randomizable public keys, including signatures with re-
randomizable keys |[FKMT16|, key-blinded signatures, |ESS21| signatures with
honestly randomized keys, [DFL19| and updatable signatures |CRST21]. For a
disambiguation, see the work of Celi et al. [CGH'24]. Mercurial signatures
were initially used to realize more efficient DACs that out-performed the pre-
vious construction built using Groth-Sahai proofs [BCCT09|, but have also
been used in other applications, such as contact tracing |GL24]. Some mer-
curial schemes |[MBG™23/|CL19] suffer from a limitation: signature unlinkabil-
ity only holds when the signer does not collude with the adversary. Griffy et
al. |[GLM™24b| strengthened the definition and construction of mercurial sig-
natures from |CL19| to support privacy against malicious signers, though this
construction requires a structured common reference string (SRS).

Many mercurial schemes are also structure-preserving signatures |[AFGT10].
A structure-preserving signature has the property that its messages, signatures,
and keys are all composed of elements of a bilinear group. This enables the
signature verification algorithm (and other functions) to be executed in zero
knowledge using Groth-Sahai proofs [GS08|. These proofs are more efficient than
black-box proofs because they allow algebraic relations between group elements
to be proven directly without translating them into circuit representations of
algebraic operations, as required in general-purpose ZKPs [GKRO08|). Moreover,

Groth-Sahai proofs are randomizable, which is what allowed the efficient con-
struction of DACs in [BCCT09].

Threshold Mercurial Signatures. Threshold mercurial signatures were first
introduced by Abe et al. in [ANPKT24|, which adapted |CL19] to the thresh-
old setting to create stronger anonymity and unforgeability properties for del-
egatable anonymous credentials. While their construction does not require an
SRS (unlike [GLM™24b)), their scheme does require interaction between signers
to produce a signature, which is undesireable. Similar to threshold mercurial
signatures is the the work of Mir et al. [MBG™23| which introduced aggregat-
able mercurial signatures. However, their scheme did not support the signing
of public keys as messages |[GL24|, which limited their application to issuer-
hiding |[BEK™21] and multi-authority [HP22] ACs (which are implied by DAC,
but not vice-versa). We note that when the threshold mercurial signatures set
t =1 with n > ¢ then the notion is closely related to group signatures [?].

1.4 Organization

Section [2] briefly presents our preliminaries and building blocks. Section [3]
introduces our notion of threshold mercurial signature (TMS) and presents a
construction with key size £ = 2 that supports both thresholdization and the
signing of public keys. Section [4] introduces the notion of threshold delegatable
anonymous credentials (TDAC) along with a construction.

While the body of our paper is self-contained, we provide additional mate-
rial in the appendix. When a section in the body relies on a definition from the
appendix, we give intuition for the definition in the body. Appendix [A] details
additional preliminaries and building blocks. Appendix [B] describes a TMS con-
struction for an arbitrary key size (£ € poly())). Appendix provides a detailed
security proof of our TDAC construction. Appendices [D] and [E] prove the public
key class-hiding and unforgeability, respectfully, of our TMS construction.

2 Preliminaries

In this section, we briefly introduce the notation, definitions, and building blocks
that we use in the rest of the paper. Due to space constraints, we present the
other preliminaries (i.e., mercurial signature, aggregated mercurial signature,
etc.) alongside our construction in Section [3| and Appendix

Notation. We let A € N denote the computational security parameter. In
threshold settings, we let n denote the number of parties and ¢ denote threshold
such that any fewer than ¢ colluding parties cannot compromise security. Hence
1 <t <n.Welet [b] denote the set {1,...,b}. We denote the concatenation of

xz and y by (z||y). Given a set X, we use x & X to denote the sampling of a
value z from the uniform distribution over X. We denote poly(A) and negl(\) as
any generic (unspecified) polynomial and negligible functions in A, respectively.
A function negl : N — R is said to be negligible in \ if for every positive polyno-
mial p, negl(A) < 1/p(\) when X is sufficiently large. We abbreviate probabilistic
polynomial time as PPT. For a turing machine TM and set of inputs args, we let
x € TM(args) mean that there exists random tape p such that z = TM(args; p).
We denote by x = val or & < val the assignment of a value val to the variable .
We let out < A(in;) denote the evaluation of a PPT algorithm A that produces

an output out from an input in with randomness r < {0,1}*, and omitting r

when it is obvious or not explicitly required. We let A9™ denote that we run A
with oracle access to O%€, i.e., O executes alg on inputs of A’s and returns the
corresponding outputs.

Prime-Order Bilinear Groups. We work with cyclic groups of prime or-
der p equipped with an asymmetric bilinear map. We assume a PPT bilin-
ear group generator algorithm BGGen that, on input A € N, outputs BG :=
(p,G1,Ga, G, P, P, e) < BGGen(1*). Here p is a prime of O(\) bits; G, G, are
bilinear groups (or pairing groups) and Gy is a multiplicative group, all of prime
order p; P and P are generators of G, and G, respectively; and e : Gy xGy — G
is a non-degenerate, efficiently computable bilinear pairing. Hence, we see that
e(P, P) is a generator of Gr.

Shamir Secret Sharing [Sha79|. Shamir secret sharing allows a secret in a
finite field (in this paper, Z,) to be split into n shares such that any subset of ¢
shares can reconstruct the original. Any subset of fewer than ¢ shares is uniformly
distributed over Z,, making the scheme information-theoretically secure. In our
construction, we will use the functions Share which splits a secret into n shares,
and Reconst, which recovers the secret from any ¢ shares. To briefly review, Share
will split an element x of Z,, into shares, {¥;};c[n), such that for any T C [n],
> e Aai,xi = . We review this primitive more formally in Appendix

Tag-based Message Spaces. Following [MBG™23}|CL19,|CKP 23|, we first
describe the space on which messages are signed before defining our mercurial
signatures.

Tag-based Diffie-Hellman Message Space. Early constructions of DACs restricted
the message space of the signature scheme vectors of elements from a single
source group (e.g., M e GY). This restriction enabled the use of Groth-Sahai
proofs |GS08| and allowed for efficient DAC constructions |[BCCT09]. However,
it was later shown that using only a single source group leads to impossibility
results concerning signatures size [AGHO11]. This limitation was mitigated by
defining message spaces over multiple source groups |Ghal6| (e.g., (M,N) €
G{ x GY), which are referred to as Diffie-Hellman message spaces [CKP*23].
To see why tags are important, recall the signatures from Section [I} which
takes the form o = (h,b,s) = (b, TS*T5% b1 M2 M5<#). One way to ensure
unforgeability is to have the signer uniformly sample h & G, for each signature.
Randomly sampling h in this way prevents a forgery attack. If two distinct
tag-message pairs signed with the same h, this yields ¢ = (h,b,s) and ¢’ =
(h,b',s"). A trivial forgery then follows by computing b - b = (T} T})< (TyTy)s
and s - s’ = h2 (M M])%2 (Mo M3)**3 | producing a signature o* = (h2, b/, ss')
for the message M* = (MM, MyM}) and tag T* = (T\T},ToT3). Yet, to
perform aggregation in [MBG™23| (and enable thresholdization in our signature),
signatures must share the same first element h. This creates a problem, since we
need equivalent messages to share h values, but we need to ensure that distinct
messages do not share an h value to prevent forgeries. To resolve this, we let h be
the output of a hash computed on both the tag and the message. This ensures,
by collision resistance, that no two distinct tags and messages share an h value.

For more information on tags, see [MBG™23|. In our proofs, we do not use
the internal structure of tags, but instead reduce directly to their construction.
We describe the tag and message spaces in Definitions [I] and 2] The tag space is
parameterized by part of the message vector, N. Valid message/tag pairs must

satisfy that (M N) € M and T € TN. This resolves the “circular dependency”
mentioned in ICKP“‘QSEI This tag must be presented with the signature and
message and thus to achieve meaningful anonymity properties, we must allow
for randomization of tags, which can be done by randomizing the v value in Def-
inition [

Definition 1 (Tag Space (7']\7) [MBG*23]). TN ¢ (G1)* is a tag space
if for all T = (Ty,...,Ty) € TN, 3 4 € Zy, p = (p1,---,pe) such that
N = (Ny,...,Ny) € (Gy)t, h = H(Pr||...||P?||Ny]|...||Ne) and T =
(RYPr, ... P,

Definition 2 (Tag-based DH Message Space (M) [MBG™23]|). M C
(G1)! x (Go)* is a tag-based Diffie-Hellman (DH) message space if for all
(M,N) = (My,...,My,Ny,...,N;) € M, 3T € TN such that and i € [{],
e(M;, P) = e(T}, N).

We omit the superscript (7) to denote the union of tag spaces parameterized
by all N. Similar to |CKP23,[MBG*23|, since h depends on T and M depends
on (f, h), to generate messages, we first sample my1, ..., mg, p1, ..., p; from Z.
Then, N = (P™,...,P™) and h = H(PP||...||P¢||Ny]||...||N¢) are com-
puted. M can be computed easily from there. This generation is described in
the scheme by in the function GenAuxTag in Definition [3] with corresponding
verification function, VerifyAuﬂ Note that while signing messages and tags re-
quires the secrets, p1,...,p¢ to be known to verify that the message and tags
are valid, during verification, only the group elements, T, (M N), are required
and thus the scheme is still structure preserving.

We omit a review of non-threshold mercurial signature definitions here and
instead present only our new definition of threshold mercurial signatures in the
following section since their description is similar. A formal description of non-
threshold mercurial signatures is available in Appendix Threshold mercurial
signatures imply non-threshold mercurial signatures as can be seen by setting
n=t=1.

3 Threshold Mercurial Signatures

In this section, we formally define the notion of a non-interactive threshold mer-
curial signature (TMS) which extends mercurial signatures with a distributed
key-generation process and a threshold signing procedure, requiring a quorum of
parties to jointly produce a signature. Unlike the construction in [ANPKT24],
our TMS scheme does not require any interaction between the signers during

5 This was mentioned w.r.t. indexed message spaces, but the dependency was present
in tag-based message spaces in [MBG™ 23|

5 The “aux” part of VerifyAux is an artifact from the aggregation property of [MBG™ 23|
which we inherit for consistency. aux = L for our construction.

signature generation. To obtain a signature, a user needs to interact with ¢ dif-
ferent signers independently via ParSign to receive ¢ partial signatures, which
they can then combine into one signature via Reconst.

3.1 Syntax and Security Definition

We first describe the syntax of threshold mercurial signatures in Definition [3]
and its randomization properties: message class-hiding in Definition [6} public
key class-hiding in Definition and origin-hiding in Definition [J] as well as
what it means to be unforgeable in Definition 5} We then describe the property
necessary to build threshold delegatable anonymous credentials (TDAC) from
this signature scheme (cross-scheme correctness) in Definition

Intuition of randomization features. The main feature of mercurial signatures is
their randomization properties. A signature holder can randomize the public key,
message, and signature itself to still verify while being unlinkable to the original
signature. Specifically, mercurial signature schemes provide a ChangeRep func-
tion that takes a verifying message and signature pair and outputs a randomized
pair that still verifies. Similarly, these schemes provide a ConvertPK function to
randomize a public key, and a ConvertSig function to update associated signa-
tures accordingly. Since our definition is for a threshold mercurial signature, it
modifies some of these functions to operate on partial keys.

Intuition of unforgeability. A definitional problem arises when message random-
ization is allowed: what now constitutes a forgery? If arbitrary randomizations
were allowed (i.e., if the image of ChangeRep(pk, (M, N), o) was the entire mes-
sage space), then it would be impossible to define unforgeability, since a signature
on any message could be updated into a signature on any other message in M.
This issue is resolved by introducting equivalence classes, which specify which
randomizations are allowed, and do not constitute a forgery. In this framework,
the image of ChangeRep(pk, (M, N),a) is restricted to the equivalence class of
(M, N), denoted [(M, N)]gerar). Unforgeability (Definition [5) can then be de-
fined to require that the forged message doesn’t belong to the equivalence class
of any message queried to the signing oracle.

For example, in our construction, the equivalence class of a message is
[(M,N)g, = {(M',N') : 3u,v € ZX,(M',N') = (M*,N")}, and the equiv-
alence class of a tag is [T}RT ={T": 3 € Z;,T” = T7}. We also want our
unforgeability definition to capture forgeries when the public key is randomized.
Thus, our unforgeability definition must also allow for the adversary to try to
forge under any key that is in the same equivalence class as the challenge key and
we define an equivalence relation for keys. For our construction without cross-
scheme correctness, this equivalence class is [N]z, = {N': v € Zy, N' = N"}.
When we add cross-scheme correctness, the equivalence class of keys becomes
identical to the equivalence class for messages.

Intuition of randomization security definitions. Given our notion of equivalence
classes, we can now describe the security definitions pertaining to randomization.

Message class-hiding (Definition @) ensures that, given a message (]\7[N), it

is difficult to distinguish a randomization of that message (i.e., (]\2’,]\7’) &

[(M,N)]) from a new, freshly sampled message (i.e., (M’, N') < M). Public

key class-hiding is similar in that it ensures that it is difficult to distinguish a
public key and its randomization from two independently sampled public keys.
Furthermore, in the threshold public key class-hiding game, the adversary is
given access to a partial signature oracle for each of the public keys. Finally,
origin hiding (Definition E[) ensures that the scheme’s randomization algorithms
all have uniformly distributed outputs, so that they appear identical to a fresh
sampling.

We now proceed with the syntax formal definitions of these properties of mer-
curial signatures. In our ConvertTag, ConvertSK, ConvertPK, ConvertSig, and
ChangeRep functions, the converter is sampled uniformly from Z) if omitted.
To facilitate the verification of tags, the functions GenAuxTag, VerifyTag, and
VerifyAux are included. We described how GenAuxTag and VerifyAux are used to

verify tags in Section [2| VerifyTag is only used in the security games.

Definition 3 (Threshold Mercurial Signatures). A threshold mercurial
signature scheme TMS is parameterized by a tag, message, and key space, T,
M, and K; equivalence relations for tags, messages, and keys, [Ir+, 1R
and [|r.; and consists of a tuple of the following PPT algorithms (Setup,
KeyGen, GenAuxTag, VerifyAux, VerifyTag, ParSign, ParVerify, Reconst, Verify,
ConvertTag, ConvertParSK, ConvertParPK, ConvertPK, ConvertSig, ChangeRep),
which have following syntax:

— Setup(1*, 1%) — pp: The setup algorithm takes as input the security parameter
A and key size £, and outputs the public parameters pp. We assume that pp is
known to the rest of the algorithms, even if omitted.

— KeyGen(pp, n,t) — (s_R, pk, pkoy): The key-generation algorithm takes as input
the public parameters pp and integers t,n € poly(\) such that 1 <t <n, and
outputs the vectors of partial signing and public keys sk = (skq,...,sky) and
pT(= (pky,...,pk,), and the global public key pky. Each party P; for i € [n]
receives pk, and their key pair (ski, pk;).

— GenAuxTag({m1,...,m¢}) = (7, T, (M, N),aux): The auziliary tag generation
algorithm takes as input a message secret {my,...,my} and outputs a tag
secret p, a public tag f, a message such that (M, N) e MT as described
in Section[d, and auziliary data aux.

— VerifyAux(aux, 7, (M, N)) = {0,1}: The auziliary verification algorithm takes
as input an auziliary data aux, tag secret p, and message vectors (M,]\7) e M,
and outputs 1 if they are correctly distributed and O otherwise.

— VerifyTag(p, f) — {0,1}: The tag verification algorithm takes as input a tag T
and its secret p, and outputs 1 if they are valid (i.e., Te T) and 0 otherwise.

— ParSign(sk;, 7, aux, (M, N)) — o;: The partial signature algorithm takes as
input a partial signing key sk;, tag secret p, auxiliary data aux, and message
vectors (M, N) € M and outputs a partial signature o;.

— ParVerify(ka-,f, (M, N)pi) — {0,1}: The partial signature verification algo-
rithm takes as input a partial public key pk;, public tag f, message vectors

(M,]\7) € M, and partial signature o;, and outputs 1 if o; is a valid signature
and O otherwise.

10

— Reconst(p_lk, T, (M, ﬁ),{i,ai}ieg)) — o: The signature reconstruction algo-
rithm takes as input the vector of all partial public keys p_|’<, message vectors
(M,N) € M, and a set of T C [n] (such that |T| = t) partial signatures o;
with corresponding indices i, and outputs a combined signature o.

— Verify(pkg, T, (M, N),0) — {0,1}: The signature verification algorithm takes
as input the global public key pk,, public tag f, message vectors (Z\Z,]\7) eEM,
and signature o and outputs 1 if o is a valid signature or 0 otherwise.

— ConvertTag(f;) — T': The tag conversion algorithm takes as input a tag T

X
D’

— ConvertParSK(sk;; w) — ski: The secret key conversion algorithm takes as in-
put a partial signing key sk; and converter w € Z,;, and outputs a new signing
key sk € [ski]rsx -

— ConvertParPK(pk,;w) — pki: The public key conversion algorithm takes as
input a partial public key pk; and converter w € Z,;, and outputs a new public
key pk; € [pki]'R)c'

— ConvertPK(pky;w) — pky: The public key conversion algorithm takes as input
the global public key pk,; and converter w € ZX, and outputs a new public key

p 7
pk6 € [pkO]R/c'
— ConvertSig(pky, T, (M, N),o;w) — o': The signature conversion algorithm

takes as input the global public key pk,, public tag f, message vectors (M,]\7) €
M, signature o and converter w € Z*, and outputs a new signature o’ that

verifies with pky = ConvertPK(pkO;w)p

— ChangeRep(pky, T, (M, N), o; (1, v)) — (T",(M',N"),0"): On input the global
public key pky, public tag f, message vectors (M, _') € M, signature o, and
converters i, v € Z,* and outputs a new tag T e [T]RT, message (M',N') €

and converter v € 7, and outputs a new tag T' € [T)r., .

(M, N)|z..,, and signature o',
A TMS scheme must satisfy the properties of correctness (Definition , un-
forgeability (Definition @, message class-hiding (Definition @, tag class hiding
(Definition @), public key class-hiding (Definition @, and origin-hiding (Defini-
tion @
Definition 4 (Correctness). A threshold mercurial signature scheme TMS =
(Setup, KeyGen, GenAuxTag, VerifyAux, VerifyTag, ParSign, ParVerify, Reconst,

Verify, ConvertTag, ConvertParSK, ConvertParPK, ConvertPK, ConvertSig,
ChangeRep) is correct if, for all A\,n,t € N such that 1 < t < n, for all

(M,N) € M, for all pp € Setup(1*), for all (sk, pk,pky) € KeyGen(pp,n,t),
and for all M, J\?,p" and T € GenAuxTag(M,]\7) such that VerifyTag(p, f) =1, it
satisfies the following conditions:

— Partial Verification. For all o; € ParSign(sk;, 7,aux, (M, N)), it holds that
ParVerify(pk;, T, (M,N),0;) = 1.

— Threshold Verification. For all ¥ C [n] of size || = t and for all
o « Reconst(pk, T, (M, N), {i, ParSign(sk;, 7, aux, (M, N)) Yiex), it holds that
Verify(pky, T, (M, N), o) = 1.

11

— Key Conversion. For all (s_R, pk, pkg) € KeyGen(pp,n,t), sk €
(ConvertParSK(sk;)) e (n] pk € (ConvertParPK(pk;))icn, and pky €
ConvertPK(pkg), it holds that (S_R’, pT(’, pkg) € KeyGen(pp,n,t).

— Signature Conversion. For all o s.t. Verify(pko,f, (M,]\7),0) =1 and for all
o' € ConvertSig(pky, T, (M, N), o), it holds that Verify(pky, T, (M, N),0") = 1.

— Change of Message Representative. For all o s.t. Verify(pko,f, (]\Zf, N), o)=1
and for all (T',(M’',N’),0') € ChangeRep(pko, T, (M, N),0)), it holds that
Verify(pko, T/, (M',N"),0") = 1 and (M',N") € [(M, N)]r.,-

Definition 5 (Threshold Unforgeability). A threshold mercurial signa-
ture scheme TMS = (Setup, KeyGen, GenAuxTag, VerifyAux, VerifyTag, ParSign,
ParVerify, Reconst, Verify, ConvertTag, ConvertParSK, ConvertParPK, ConvertPK,
ConvertSig, ChangeRep) is existentially unforgeable under adaptively chosen
tagged message attack (EUF-CtMA) if, for all A,n,t € N s.t. 1 <t < n, and
for all PPT adversaries A,

AdVERE M = Pr [EUF-CEMATMS (1)) = 1] < negl()

where the unforgeability game EU F-CtMAI‘MS(l’\) is defined in Figure .

EUF-CtMATMS (1) OPSien (3, 5, aux, (M, N))
1: Initialize Q < 0; pp < Setup(1™) 1: ifi¢[n] then
2: (sk, pk, pkg) < KeyGen(pp, n, t) 2 return L
3: (C,st) + A(pp, pkg, pk) 3: else)
4: (T*, 5, (M*,N*),0") < A°PSign (st, {sk; }scc. pk, pko) e ParSigr:(SIii’ﬁ’aux7 (M,
if Verify(pky, 7", (M*, N*),0") = 1AC €[] A[C] < t 5 Q+ QU (M,N)
6 return o;

50 A V(L N) € Q" N%)r o, # (W, N]x
A VerifyTag(7, f) =1

6 : return 1

7: else return 0

Fig. 1: Unforgeability Game EUF-CtMATM5(1*) for TMS scheme.

Definition 6 (Message Class-Hiding). A threshold mercurial signature
scheme TMS = (Setup, KeyGen, GenAuxTag, VerifyAux, VerifyTag, ParSign,
ParVerify, Reconst, Verify, ConvertTag, ConvertParSK, ConvertParPK, ConvertPK,
ConvertSig, ChangeRep) is message class-hiding if, for all \,n,t € N such that
1<t <mn, and for all PPT adversaries A,

1
AdVISS-CLH _ py [MSG-CLHLMS(Y\) - 1] < 5 + negl(h)

where the message class-hiding game IVISG—CLHI‘MS(IA) is defined in Figure @

Definition 7 (Tag Class-Hiding). A threshold mercurial signature
scheme TMS = (Setup, KeyGen, GenAuxTag, VerifyAux, VerifyTag, ParSign,

12

MSG-CLHL"S(1%) PK-CLHTMS (1)

1: pp « Setup(1*) 1: pp « Setup(1?)
21 (My, Ny) &M 2: (ski, PT<1» pky,o) « KeyGen(pp, n,t)
3: (N9, N9 & M 3: (C,st) + A(pp, Pky g, PK;)

U L . (30 30 0
40 (313, N3) & (b, N)lr o, 41 (sky, pka, Pk o) < KeyGen(pp, . t)

5: $ gx
5: & f0,1} w <z
6: b« A(pp, (M1, Ny), (N2, Nby) ©F f°”1€ [n] do
7: return b — b’ 7 sky ; ConvertSK(sky i, w)
TAG-CLHTMS(1*) 8: pky « ConvertPK(pk,,w)
R 9: & 10,1}
1: -
pp < Setup(1?) 10 b« AOPSEn (st {sky ;. Skg,i}iec, pk?, pk?)

2: 7 $ T

1 11: return b =¥’

. 70 8 . O
TEET O™ (4, 7, aux, (M, N))
40 Ty & [T1)r,

1: ifi¢ [n] then
5: b g {o,1} 2 return L
6: b «— A(pp,Th,TY) 3: else
4 o1,; < ParSign(sky ¢, 7, aux, (M, N))
o2,i ParSign(sk} ;, 5, aux, (M, N))

7: returnb=1>b"

ot

6 : return (o1,;,02,;)

Fig.2: Message class-hiding game MSG-CLH'M5(1%), tag class-hiding game
TAG-CLHTM®(1%), public key class-hiding game PK-CLHZS(1*) for TMS scheme.

ParVerify, Reconst, Verify, ConvertTag, ConvertParSK, ConvertParPK, ConvertPK,
ConvertSig, ChangeRep) is tag class-hiding if, for all \,n,t € N such that
1<t <mn, and for all PPT adversaries A,

1
AdvIAG S = Pr [TAG-CLHLMS(l’\) - 1] < 5+ negl(y)

where the tag class-hiding game TAG—CLHLMS(IA) is defined in Figure @

Definition 8 (Threshold Public Key Class-Hiding). A threshold mercu-
rial signature scheme TMS = (Setup, KeyGen, GenAuxTag, VerifyAux, VerifyTag,
ParSign, ParVerify, Reconst, Verify, ConvertTag, ConvertParSK, ConvertParPK,
ConvertPK, ConvertSig, ChangeRep) is public key class-hiding if, for all \,n,t €
N such that 1 <t < n, and for all PPT adversaries A,

1
AdVEREH = pr [PK-CLHLMS(F) - 1} < 5 +negl())
where the game PK—CLHLMS(l)‘) 1s defined in Figure .

Definition 9 (Origin-Hiding). A threshold mercurial signature scheme
(Setup, KeyGen, GenAuxTag, VerifyAux, VerifyTag, ParSign, ParVerify, Reconst,
Verify, ConvertTag, ConvertParSK, ConvertParPK, ConvertPK, ConvertSig,

13

ChangeRep) is origin-hiding if, for all \;n,t € N such that 1 < t < n, for all
(M,N) € M, for all pp € Setup(1*), for all (sk, pk, pky) € KeyGen(pp,n,t),
for all aux and p such that VerifyAux(aux,ﬁ,(M,]\7)) = 1, and for o <«
Reconst(pk, T', (M, N), {i, 0; }iex)) for some set T C [n] of size |T| = t, it satisfies
the following properties:

— Origin-Hiding of ConvertPK: For allw € Z), pk’ = ConvertPK(pk;w) is a
uniform random element in [pklg,. -

— Origin-Hiding of ConvertSig: For all w € 7, sko, (M,N), and o €
Sign(sko, (M, N)), o’ = ConvertSig(o;w) is a uniform random element in the
image of Sign(skg, (M, N))

— Origin-Hiding of ChangeRep: For all (u,v) € (ZX)?, (T',(M',N"),0") +
ChangeRep(pky, T, (M, N), o; (1, v)) T is uniform in [T]RT and (M',N') is
uniform in [(M, N)|r -

— Origin-Hiding of ConvertTag: For all v € Z,;, T'" < ConvertTag(T;~), T’
is uniform in [T)z., .

For brevity, we informally define unforgeability and public key class-hiding
of non-thresholdized mercurial signatures w.r.t. our thresholdized definitions
in Definitions and Intuitively, we can simply set n =t = 1 and redefine
ParSign in the PKCH and unforgeability games to obtain correct definitions for
non-thresholdized schemes. We review the formal definitions of non-thresholdized
mercurial signatures in Appendices and [A.4] The non-threshold versions of
tag and message class-hiding are identical.

Definition 10 (Unforgeability (informal)). A mercurial signature scheme
MS is existentially unforgeable under adaptively chosen tagged message attack

(EUF-CtMA) if for all A e N and t = n =1, for all PPT adversaries A,
AdvERCMA — py [EUF-CtMAB{S(P) = 1] < negl())

where the unforgeability game EUF—CtMA%S(l)‘) is defined in Figure with one

modification: Sign is used in place of ParSign.

Definition 11 (Public Key Class-Hiding (informal)). A mercurial signa-
ture scheme MS has public key class-hiding if for all A\ € N and t = n =1, for
all PPT adversaries A,

1
AdVRESE = Pr [PK-CLHES(1%) = 1] < 2+ negl()

where the public key class-hiding game PK—CLH%S(IA) is defined in Figure@ with
one modification: Sign is used in place of ParSign.

Cross-scheme correctness

Some definitions of mercurial signatures, such as the one in [MBG™23|, do
not support the signing of public keys. This was an informal property of [CL19|

14

that was later formalized as cross-scheme correctness in |GL24]. We define a
similar property of our scheme called leveled cross scheme correctness (in Def-
inition that introduces the function ExtendSetup(pp) — pp’, which takes in
public parameters and extends the scheme to a lower level for DAC. This ensures
that keys can be signed, thus allowing for the (relatively) generic construction of
DAC from mercurial signatures. ExtendSetup takes in the parameters for a mer-
curial signature scheme, pp, and creates a new scheme defined by a new set of
parameters, pp’, such that any public key generated by pp can be signed by pp’.
Moreover, our public key generation function must output an extra “secret tag”
value p, which is used to sign public keys (similar to the g’ output by GenAuxTag)
which we include in each sk; output by KeyGen.

Definition 12 (Leveled cross-scheme correctness). A threshold mercurial
signature scheme TMS is leveled cross-scheme correct if, for all n,t, £ € O(N),
pp € Setup(1*,1%), pp’ < ExtendSetup(pp), (sk,pk,pk) < KeyGen(pp,n,t),
(s_lé',p_l;',pk’) + KeyGen(pp’,n,t), Vi € [n],0; < Sign(pp’, sk, 7, pk), VT C [n],
|| = t, o = Reconst(pK’, pk, {o; }ic), it holds that Verify(pp’, pk’, pk, o) = 1.

3.2 Enhanced Construction (adapted from [MBGT23|)

Before explaining our threshold construction, we present the mercurial sig-
nature construction from [MBG™23| that our scheme is based on. Although the
original scheme in [MBG™23| was an aggregatable mercurial signature, we re-
move the aggregatable features here by omitting AggrSign and VerifyAggr (since
they aren’t relevant to our paper), turning it into a regular mercurial signature.
We also make some modifications to the notation to keep it consistent with con-
struction. Finally, we modify the original scheme for cross-scheme correctness,

including extra terms in . We refer to the version of the scheme
without these boxed elements as the plain version, and the version with these
boxed elements as the cross-scheme correct version.

The equivalence classes for messages, tags, and public keys used in the plain
version of the scheme are defined identically to [MBG™23|. To support cross-
scheme correctness, we also add an equivalence class for public keys with cross-
scheme correctness. We described these equivalence classes informally in Sec-
tion [3:I] We formally review them all—including the one we added for cross-
scheme correctness—in Appendix [B]

This construction is presented in Figure [3| for the case where messages are of
length ¢ = 2 (i.e., (M, N) = (My, My, Ny, No) and T = (T, T3)). The generalized
construction for any £ € poly(A) can be found in Appendix by setting n =
t =1 in our generalized threshold mercurial signature construction. We refer to
the construction in Figure|3|as TIypgLs, named after the authors of [MBG™23)|.

Theorem 1 (Correctness). The IlygcLs construction in Figure@ s a correct
mercurial signature scheme scheme as per Definition [J)

Theorem 2 (Cross-Scheme Correctness). The TIypgLs construction
m Figure@ (when extended to a general £ by settingmn =t = 1 in the construction
mn Appendz':r is a cross-scheme correct mercurial signature scheme scheme

as per Definition [13

15

Setup(1?)

1: BG:= (p,G1,G2,Gr, P, P,e) « BGGen(1)
2: Sample a hash function H : {0,1}* — G
3: return pp = (p,G1,G2,Gr, P, P, e, H)
KeyGen(pp)

$ 5
(%, 91, Y2, 21, 22) < (Zj)

$ 5
2: Sample | (pi)igs) <—(Z;)

pvi pv2 pz1 pz2)

1: Sample sk :=

NEO = (NP9, 5 = (P,

M = (Mi(pk))z‘e[s]
— (hﬁll'7 hP2Y1 R hPS!Iz7 hP471 s h9522)

‘ Tiek) — (Ti(pk))ie[%] = (hP1,hP2 hP3 hP4 KP5)

r (pk 7 (Pk
[h= HPA PR N |

4: return (sk, pk)
VKeyGen(sk)

1: parse sk = (z,y1,y2, 21, 22)

pk = (X = P*, Y1 = PV, ¥, = P2,

Sign(sk, 7, aux, (M, V)

1: parse (M,N) = ((My, M), (N1, N2)) € Mip,

2 if VerifyAux(aux, g, (M, N)) = 0: return L

3: Compute h = H(c)

4: o=(hbs) = (h’ Ier W77, " e M;j)
5 return o

(T1,T2), (M,N),o

Verify(pk, T = = (h,b,s))

1: parse (M, N) = ((My, Ms), (N1, N2))

2: parse pk = (N®O | 70 FE0 |y

if e(h, NP T e(M;, N&) = e(s, P) Ae(b, P)

1+3
3. i€l2]
=TT e, RPN e(Ty,N;) = e(M;, P)
i€l2] J€l2]
4: return 1

5: else return 0

VerifyTag(T', 5 = (p1, p2))

1: if T; = h”i for all 4 € {1,2}: return 1

2: else return 0

ConvertSK(sk = (z,y1, y2, 21, 22))

1: wﬁZ;

7y = P*1, Zy = P*2) 2: return sk’ = w- sk = (wz,...,wzs)
GenAuxTag({m1,m2}) ConvertPK(pk = (X, Y1,Ya, Z1, Z5))
1: N=(pPm™,pm2) 10w &zx

2: Sample p1,p2 & ZX and set 5= (p1, p2)

3: c¢=(PPL||PP2||N1||N2) and h = H(c)

4: M= (hP1™1 pP2m2), T = (Ty = hPL, Ty = hP2)
5: return (p7T (M N) 1)

VerifyAux(aux, (p1, p2), (M1, M), (N1, N2)))

1: Compute ¢ = (PP1||PP2||Ny||N2)

2: Compute (T1,T2) = (h”1, hP2)

3: Compute h := H(c)

4: return /\2,1 e(M;, P) = e(h?i, N;)
ConvertTag(T = (T1, Tz) = (h**, h*?))
1: ¥ <i Z:

2: return T’ = (Ty,Ty) = (hP17, hP27)

2: return pk’ = pk‘” = (X A
ConvertSig(pk, T, (M, N),)

1w & zX
2: parse o = (h,b,s)
3: return o’ = (h,b”,s¥) T

ChangeRep(pk, T, (M, N),o = (h,b, s))

Lo (uv) & (2

2: T' + ConvertTag(T,)

3: o = (', V,s) = (W', b, sh)

4: (M'=M"",N' =N") € [(M,N)]rpy
5: return (T',(M',N’),c")

Fig. 3: Mercurial Signature (modified from [MBG™23|) scheme IImgcLs.

T While ConvertSig appears to only randomize the second two elements of signatures, we achieve

signature unlinkability when tags are randomized in ChangeRep due to message class hiding.

Theorem 3 (Message Class-Hiding).

Assuming the decisional Diffie-

Hellman assumption is hard in the bilinear pairing groups, the IluyggLs con-
struction in Figure[3 is message class-hiding as per Definition [

16

Theorem 4 (Tag Class-Hiding). Assuming the decisional Diffie-Hellman
assumption is hard in the bilinear pairing groups, the IlmggLs construction in
Figure[3 is tag class-hiding as per Definition [

Theorem 5 (Origin-Hiding). The IlygcLs construction in Figure @ 1S per-
fectly origin-hiding as per Definition[9

Theorem 6 (Unforgeability). The IlvpgLs construction in Figure @ 18
existentially unforgeable against adaptively chosen tagged message attack
(EUF-CtMA) as per Definition |24 (informally described in Definition @) in the
generic group model.

Theorem 7 (Public Key Class-Hiding). The IlpygaLs construction in Fig-
ure@ is public key class-hiding as per Deﬁnition (informally described in Def-
im’tion i the generic group model.

For the plain version of ITyggLs (without boxed elements), Theorems|[L]and [3]to[7]
follow from [MBG™23|. For the cross-scheme correct version of IIyggLs, Theo-
rems|l|and to follow from [MBG™23|. Cross-scheme correctness (Theorem
follows from the cross-scheme correctness of our threshold mercurial signature
(Theorem E[) by setting n =t = 1. For the cross-scheme correct version, Theo-
rem [7] is proved in Appendix [D.2] and Theorem [f]is proved in Appendix [E.2]

3.3 Construction of TMS

In Figure[d] we provide a concrete construction of our threshold mercurial sig-
nature scheme TMS = (Setup, KeyGen, GenAuxTag, VerifyAux, VerifyTag, ParSign,
ParVerify, Reconst, Verify, ConvertTag, ConvertParSK, ConvertParPK, ConvertPK,
ConvertSig, ChangeRep) (in Definition [3|) for ¢ = 2, which we call IItys. We
generalize this construction to £ € poly(A) in Construction |2 of Appendix
Note that ¢ determines the size of vectors in the scheme, so in the general case,
a message-tag pair takes the form (M, N) = ((M;);cie, (N;)jen), T = (1) jelq-
We also present a cross-scheme correct version of Iltys. Elements that are re-
quired for cross-scheme correctness only (i.e. not required for Definition [3]) are

presented in . We use the following parameters and building-blocks:

Parameters: The security parameter A € N, the key size £ = 2, the total number
of parties n € N, and the signing threshold ¢ € N.

Building-blocks: The Shamir secret sharing scheme SSS = (Share, Reconst)
as in Figure m and the modified mercurial signature scheme ITyggs = (Setup,
KeyGen, VKeyGen, GenAuxTag, VerifyAux, Sign, Verify, VerifyTag, ConvertTag,
ChangeRep, ConvertSK, ConvertPK, ConvertSig) from Figure

We omit the description of functions that are identical to those in Figure[3] These
functions are: Setup, GenAuxTag, VerifyTag, Verify, ConvertTag, ConvertPK,
ConvertSig, and ChangeRep. We also omit ConvertParSK and ConvertParPK|,
which function identically as ConvertSK and ConvertPK in Figure [3] respectively.

TMS for arbitrary ¢. Construction [2in Appendix generalizes from £ = 2
to an arbitrary £ € poly(\). This means that, in the cross-scheme correct version,

17

KeyGen(pp, n, t) ParSign(sk;, p, aux, (]\7[,]\7))

5 . ~ .
1: Sample sk == (z, Y1, Y2, 21, 22) & (Z;) 1: Run o; + IlygcLs-Sign(sks, g, aux, (M, N))

s 5 2: return o;
ple| 7= (Pi)ic) (p) ParVerify(pk,, T, (M, N), o)
~ ok — bk S
3: Compute pky = (N(pko), ’)7 where 1: return Iyggs.Verify(pk;, T, (M, N))

o & (pk Bsko i Reconst(pk, T, (M, N), {i, o }:
NPko) — (Ni(p O))ie[S] — (PSkO,z)iE[S] (p ’ 7(B)7{ B 1}16‘3)
MPRo) = (M,i(pk(]))ie[s] 1: if TZ[n]V|T|#treturn L
= (hP1% RP2YL pP3Y2 RpPAFL P52 2: parse pk = (pky,...,pk,)
- 3: parse o; = (hi,b;,s;) fori € T
() — (p®PRY . (pP1 P2 BP3 P4 RPS i i 04, 85
T (Ti™ieis) = (AL, hP2, RS, P4, hP3) 4: fori,j €T do
h=H(P| ... [|P5 NP NP 5: if h; #h; return L
4: Run sk = (ski,...,sky,) < Share(sko, p, n, t) 6: foric T do
where Vi € [n],sk; == (24, Y41, ¥i,2, 2,1, Zz‘,z,) T if ParVerify(pk;, T (M, N), 03) = 0:
8: return L
5: Compute pk := (pkq,...,pk,), where R N
9: o= (hbs) = (hIles b Tliex 50
s = (o0 G| 7] (b= (M
10: return o

Nk = (X, Vi1, Yi2, Ziny Ziy2)
— (ﬁzzi7 [f)yi,1715yi,2,15zi,1}152i,2)
M PR — (hP1%i pP2Yi,1 pP3YE2 pPAZiL pP5Zi2)

return (sk, pk, pkg) / Send (skj, pk;) to P;

Fig. 4: Construction of threshold mercurial signature scheme Iltys.

our public key takes the form pk, = (]\7“’"0), M(Pko), f(Pk)), where:

—

N(Pko) — (Ni(pko))ie[é] _ (pz7py17 o ,pye7 pZ17 o ’pn)7
M(pko) — (M‘(pkO))iE[ﬁ] _ (hmz, hP2Y1 e, hp2+571ye7 hP2+221, . hP2+25712£)’
THpk) — (Ti(pk()))ie[f] = (h*",... h")
Once we have this generalized construction, we can define how to extend the
scheme so that it can be used in DAC as described in Section[3.1lin Definition 12|
We show this extension (ExtendSetup, which satisfies Definition below.
— ExtendSetup(pp) — (pp’):
1. Parse pp = (1*,4, (e, P, P)).
2. Output pp’ = (1*,£x 241, (e, P, P)).

3.4 Security Analysis of TMS

We formally state the security of Iltyms scheme in Theorems [§] to and
prove them below.

Theorem 8 (Correctness). Assuming that the SSS is a correct Shamir secret

sharing scheme as in Figure [T, our IItws construction in Figure[] is a correct
threshold mercurial signature scheme TMS as per Definition [])

18

Theorem 9 (Cross-Scheme Correctness). Assuming that the SSS is a cor-
rect Shamir secret sharing scheme as in Figure[7, our Iltus construction in Fig-
ure |4| (when extended to general £ in Appendix is a cross-scheme correct
threshold mercurial signature scheme TMS as per Definition [13

Theorem 10 (Message Class-Hiding). Assuming the decisional Diffie-
Hellman assumption is hard in the bilinear pairing groups, our Iltms construc-
tion in Figure[]) is message class-hiding as per Definition [0

Theorem 11 (Tag Class-Hiding). Assuming the decisional Diffie-Hellman
assumption is hard in the bilinear pairing groups, our Iltms construction in Fig-
ure[{] is tag class-hiding as per Definition [0}

Theorem 12 (Origin-Hiding). Our IItus construction in Figure |4 is per-
fectly origin-hiding as per Definition[9

Theorem 13 (Unforgeability). Assuming that the cross-scheme correct ver-
sion of the IugcLs construction in Figure[3is an unforgeable mercurial signature
scheme as defined in Deﬁnition (informally described in Definition , and
assuming that SSS is a secure Shamir secret sharing scheme as in Figure|7, then
our IItms construction in Figure[]] is existentially unforgeable against adaptively
chosen tagged message attack (EUF-CtMA) as per Definition @ in the generic
group model.

Theorem 14 (Public Key Class-Hiding). Assuming that the IygeLs con-
struction in Figure [3 has public key class-hiding as defined in Definition
(informally described in Definition , and that SSS is a secure Shamir se-
cret sharing scheme as in Figure[], then our Iltms construction in Figure []] is
threshold public key class-hiding as per Definition[§ in the generic group model.

Proofs. We note that the proofs of Theorems [I0] to [12] follow directly from the
tag class-hiding proof of the ITyggLs scheme in [MBG™ 23|, since the construction
of our messages and tags (as well as their randomization) is identical.

Proof (of Theorem|[§ (Correctness)). There are five properties to the correctness
definition in Definition 4] The proof of partial verification correctness is the same
as the verification proof in [MBG™23| and follows from inspection. The proofs
for key conversion correctness, signature conversion correctness, and change of
message representative correctness also follow from inspection. Here, we provide
the proof for threshold verification correctness.

For a full signature o < Reconst(p},f, (M,]\7), {i,0;}icx), we want to show
that each condition checked by Verify passes. We know that o = (h, b, s), where

b:Hb?i:Hth)gz” th; sex ZigA th]zj

i€ET 1€T j€(2] J€(2]
s=[]sd = [[no>] My = nZeson I Mzﬂy” =n*] MY
€T €T j€[2] Jj€[2] JE[2]

It follows by inspection that e(h, X) e e(M;,Y;) = e(s,P) A e(b,P) =
[Ty e(Ty, Z;). The third condition, /\]6[2]6(Tj,N;) = e(M;, P), is true for
any (M, N) € M. Therefore, Verify(pky, T, (M, N), o) = 1. O

19

Proof (Proof of Theorem@ (Cross-scheme Correctness)). Let pp € Setup(1*, /).
By the definition of ExtendSetup we see that pp’ +— ExtendSetup(pp) is exactly
the same but with ¢ = 2¢ 4+ 1. Thus, any key generated by KeyGen(pp) is:

Sk:(xvylw"aylvzla"'azl)

o= ((B=, P .., PP P, P,
Pz JPy.1 Pyt RP=1 Pz,
(P RPr | RPwe JP=t L P,

(hﬁﬂ7 hl)y,lyl7 . hﬂy,zyz7 hPz1%1 b hpz,zzz))

and any key generated by KeyGen(pp’) will be the same structure but replacing
¢ with ¢/ = 2¢ + 1. Thus, for pk < KeyGen(pp) and pk’ < KeyGen(pp’), signa-
ture generation from the extended scheme becomes: o = Sign(pp’, pk’, 7, pk) =
(h,b,s) where h = H(PP=||PPvt|...||PPvt||PP=1||...||P"=*), b = Hiem Pk,
and s = h*' [[pk%, ..
Verify(pp', pk', pk) = e(h, Pki)e(pkyeyis PK1yi) = e(h® TIpkY,ppis P) = (s, P)
A e(pky iy PRy foss) = e([Lieig pkﬁ_i,fD) = e(b, P). Message verification can be
seen by inspection. ad

We can see that this passes the verification for pp’:

We prove Theorem [13]in Appendix and Theorem [14] in Appendix
4 Threshold Delegatable Anonymous Credentials

In this section, we introduce the notion of threshold delegatable anonymous cre-
dentials (TDAC) with a concrete construction, which allows thresholdization.
While we do not formalize revocation, our construction is compatible with the
generic transformation in |[GLM™24b).

We outline the high-level functionality of our TDAC scheme in Definition
This scheme begins with a Setup. A set of n root authorities (who can be ma-
licious for the sake of anonymity) generate the root key pk, using IssKeyGerE]
An intermediate issuer can then generate their key, pk|, and interact with a root
issuer using (Issue <+ Receive) to receive a partial credential cred; on pk,. After
interacting with with a set T of root issuers (such that |T| > t), the issuer can
combine the partial credential using CredComb and output a valid credential cred
on their public key pk,. For simplicity, intermediate issuers also use IssKeyGen to
generate their keys just like the root issuer. A user can then be issued a creden-
tial using the Ulssue <+ UReceive protocol and combine their credentials with the
UCredComb protocol. A user then uses their secret key and a combined creden-
tial in an interactive protocol ({Prove <> Verify)) with any verier. For simplicity,
we assume that users credentials are always length L (the maximum length
supported by the scheme) and issuers are always thresholdized with the same
parameters, n,t, though it is easy to see how our definition and construction
could be adapted to accomodate variable lengths and thresholdizing.

" Note that, in practice, it is reasonable to assume that the key-generation (i.e.,
IssKeyGen) procedure is either carried out by a trusted third party or a distributed
key generation (DKG) protocol.

20

4.1 Syntax and Security Definition

Definition 13 (Threshold Delegatable Anonymous Credentials). A
threshold delegatable anonymous credentials scheme TDAC consists of the follow-
ing PPT algorithms (Setup, IssKeyGen, UserKeyGen, Issue, Receive, CredComb,
Ulssue, UReceive, UCredComb, Prove, Verify), which have the following syntaz:

Setup(1*, 15,17 1Y) — pp: The setup algorithm takes as input the security
parameter 17, level L, the total number of parties n, and the threshold t. It
outputs the public parameters pp.

IssKeyGen(pp, L') — (pk, {ski}icin)): The issuer key generation algorithm takes
as input the public parameter pp and level L' and outputs an issuer public key
pk, and a set of partial issuer secret keys {sk;}icn)-

UserKeyGen(pp) — (pk, sk): The algorithm generates a key for the user, taking
as input the public parameter pp and outputting a user public key pk and a
user secret key sk.

(Issue(skj ;, cred), L") <> Receive(skg, L')}) — credgr ;: Credential issuance is an
interactive protocol between an issuer and receiver. The credential issuance
algorithm Issue takes as input the issuer partial secret key sk ;, the issuer cre-
dential cred| (which is L for the root issuer since they are always trusted for
unforgeability), and the level L'. The token receiver algorithm Receive takes
as input receiver a partial secret kegﬁ skr, and level L'. On success, the algo-
rithm should output a partial credential credg; to the receiver (who can then
share this with the other (n— 1) receivers not included in this execution of the
issuance protocol).

CredComb({credr,; }icx, pkg) — credr: The credential combination algorithm
takes as input a set of partial credentials {credr ;}icx and a user public key
pkg, and outputs an aggregated credential credg.

(Ulssue(sk ;, cred|) <> UReceive(sk)) — credr: User credential issuance is an
interactive protocol between an issuer (running Ulssue) and a user (running
UReceive). The issuer holds a credential cred; at the penultimate level L — 1
and the user holds a credential at the final level, L. The protocol results in a
partial credential credr; on the user’s public key, where the user’s secret key
is sk.

UCredComb({credr ; }icx, pkgr) — credgr: Combines a credential for a user
(similar to CredComb). This function takes in partial credentials {credr ; }iex
and combines them into a full credentials credr on pkg which the user can use
in the showing protocol.

(Prove(skp, credp) <> Verify(pk)) — 0/1: Credential showing is an interactive
protocol between a user and a credential verifier. The prover algorithm Prove
takes as input a user secret skp and a credential credp, and the verification
algorithm Verify takes as input the public key pk of the root authority. The
result of this protocol is a bit indicating whether the showing was valid.

A threshold delegatable anonymous credentials scheme TDAC must satisfy the
properties of: correctness (Definition , anonymity (Definition , and un-
forgeability (Definition [16]).

8 This can be an arbitrary partial secret for the receiver.

21

Before we introduce our security games, we define the oracles that the adver-
sary will use to interact with the challenger and honest users. We present these
oracles in in Figure [

— @Createll. When the adversary calls O¢eteH! they are indicating that the
challenger should create a new honest issuer and delegate issuing power to
them. The adversary specifies two sets of partial issuers (a set of issuers and
a set of receivers, indicated by id; and idg). For example, to create the first
intermediate issuer in the scheme, the adversary specifies id to be the handle
for the root, and idg to be a new handle that hasn’t been used (which will
serve as the handle for the new issuer). The oracle then proceeds with one
set issuing a credential to the another set. If this handle was already used,
the challenger aborts.

— (QlssueToAdv: Tpy the anonymity game, we allow the adversary to receive cre-
dentials as an issuer using the (0'sU¢TeAd oracle.

— QfssuefromAdv. We allow the adversary to issue credentials to honest issuers

using the (9'ssueFromAdv oracleﬂ In this oracle, the adversary specifies an issuer

set (idr) to receive a credential at a specified level (L').

QlssuefromAdv. Tp the ('ssueFromAdv gracle, the adversary receives a credential

from an honest issuer set (id)).

QProveToAdv. Ty the OProveToAdv gracle, the adversary acts as the verifier for
an honest user (idp) who proves their credential to the adversary.

_ OUIssueFromAdv and OUIssueToAdv: The oracles related to users, OUIssueFromAdv
and QUIssueToAdv " are similar to their issuer counterparts, but using the
functions specified for users instead of issuers (e.g., UserKeyGen instead of
IssKeyGen). Also, users are not thresholdized.

The challenger allows the adversary to specify “handles” to reference honest
users and issuers in the game. These can be thought of as integers and are
labeled with id. We use subscripts to distinguish these (e.g., id, for an issuer
handle). To properly act as multiple honest users, the challenger keeps track of
the following maps (SK, CRED, PK) that map handles for honest users to their
keys and credentials:

— SK holds secret keys. For issuers, SK maps handles sets of thresholdized
secret keys, while for users, SK maps handles to individual secret keys.

— CRED maps handles to credentials for both issuers and users. For a handle
id, the length of their credential (i.e., [CREDJid]|) specifies the level in [L] of
the user associated with handle id.

— PK maps issuer handles to canonical representations of public keys. To
populate the PK map, we use an unbounded extractor Epx to derive
the canonical representation of a public key. Epx has the property that
Vpk, € PK,pk’ € [pk], Ek(PK) = Epx(pk’). Using this extractor ensures
that no adversary can trivially win our anonymity game, and a powerful
extractor has been used for a similar purpose in many mercurial signatures

9 Diverging from the definition in |[GLM™"24b], we do not consider issuing forgeries
(i.e., when a malicious issuer in O™ yses a cred that they were not issued).
This is because a credential issued using a forged credential chain would yield a
forgery in showing, since it includes an issuer that wasn’t issued a credential.

22

papers since their introduction in 2019 |[CL19|. Concretely, for our tag-based
Diffie-Hellman message space, the extractor sets the first element to be the
generator N; = P and fixes the rest of the elements accordingly so that the

extracted key is in the same equivalence class: Epk(ﬁ) € []\7 Jre. We also
use an extractor for credentials, g which extracted each public key in the

showing.

Ocretetl(id, T idg, Tk, Tadv, 7 € [n], L) — pk

OlssueToAdv(ithI) o A

1: if SK[id] =1 / Handle id| doesn’t exist

Vv SK[idr] # L/ Handle idg already exists
V[Zaa| At —1
VL >L
V |CRED[idi]| # L' — 1 then
2: return L

/ Generate the new issuer’s keys and update maps:
(Pkg; {skr,i}ie(n)) lssKeyGen(pp, L')
: SK[idR] < {SkR,i}ie[n]
5: PKJidr] < £(pkg)
/ Issue the new issuer’s credential:

Issue(SK(id];, CRED[id\], L")
6: ({credi}icp, 7) < A

)

Receive(skgr,;, L") iets]
7: cred < CredComb({cred;}icx,, pkg)

8 : CRED[idgr] < cred

9: return pkg, {skr,i}ic(,y,

OcreateHU(idl,‘Il,idR) — pk

1 Same as O“*H! with the following changes:

2 Ulssue and UReceive instead of Issue and Receive, resp.,
3: L’ = L instead of L' > L,

4 and Tgp = {1}

OProveToAdv(idP) JEN A

1: if SK[idp] = L V CRED[idp] = L then return L
2: Prove(SK[idp], CRED[idp]) <+ A

3: return L

1: if SK[id]] = L then return L
2: if CRED[id]] = L then return L
3: if |%|| #t then return L

Issue(SK[id];, CRED[id|], L")
4: (L,7)« < >

)

A
5: return L

OlssueFromAdv(imeR’j c [Tl],L/) S A

1: if SK[idr] # L then return L

2: (pkg,skr) < IssKeyGen(pp)

A(pkg, 1)
>

3: ({cred;tiesg, T) + <
Receive(SK[idr];, L")

>i€‘IR

4: cred «+ CredComb({credi}iegR, pkg)
5: CREDJidg] < cred

6: return L

OUIssueFromAdv(idR) o .A

1: Same as OIssueFromAdv

with the following changes:
2: UReceive instead of Receive,
3: L' =1L, and Tgp = {1}

OUIssueToAdv (IdR) oA

Same as O'"TAY with the following changes:
Ulssue instead of Issue,
UCredComb instead of CredComb,

and L' = L,

W N

Fig. 5: Definition of Oracles for TDAC scheme.

Correctness. We define correctness for our threshold DAC scheme (in Defini-

tion [14]).

Definition 14 (Correctness).

A threshold delegatable anonymous creden-

tials scheme TDAC = (Setup, IssKeyGen, UserKeyGen, Issue, Receive, CredComb,
Ulssue, UReceive, UCredComb, Prove, Verify) is correct if for all A €

N,n € O(\),t € O(\) such that 0 < t <

n, level L O(N), is-

suer keys {((skij,pk; ;)jein),Pk;) € lssKeyGen(pp,i)}icr—1), partial creden-
tials {cred; ; = (Issue(sk;_1,j,cred; 1,4 — 1) <> Receive(ski, %))} ;e icin—1]\{0},

and credentials cred;
[n] such that |%;] t,
UserKeyGen(pp), sets T,T’

where credg

[n], 5]

=1,
%]

S

23

CredComb({cred; ;}jez,) for L — 1 sets %,

S
user keys (skp,pky) €
t, user partial creden-

tials, {credy, ; € (Ulssue(sky_1 ;,cred;_1,i — 1) <+ UReceive(pk;,i))}jex, and
user combined credential cred, = UCredComb({credy ;}iex), it holds that
(Prove({skr, ;}jex/,credr) <> Verify(pky)) = 1.

Anonymity. We define anonymity for our threshold DAC scheme in Defini-
tion [I5] In this game, the adversary is allowed to choose a root public key to
give to the challenger, and then is allowed to interact with the challenger who
plays the role of honest intermediate issuers and users. After interacting with the
oracles, the adversary chooses two credentials and gives these to the challenger.
The challenger uses the extractor Eqeq on the credentials to extract a set of pub-
lic keys that represent the intermediate issuers (one key for each level in [L —1])
and the user to which this credential was issued to. The challenger then verifies
that the public keys in the this set are all honest issuers and the credentials are
for honest users, aborting if this is not the case. The challenger then randomly
selects one of the two users and proves possession of the corresponding credential
chain to the adversary. The adversary wins if it can correctly identify which user
the challenger picked (i.e., the bit, b).

Definition 15 (Anonymity). A threshold delegatable anonymous credentials
scheme TDAC = (Setup, IssKeyGen, UserKeyGen, lIssue, Receive, CredComb,
Ulssue, UReceive, UCredComb, Prove, Verify) satisfy the anonymity property if
there exists a set of extractors, & = {Epk,Ecred}, such that for all X € Nyn €
O(N),t € O(N) such that 0 <t < n, level L = O(X) and if the advantage of any
PPT adversaries A in game ANONTPAC(1Y) (defined by Adv#BXé"A) is negligible.

1
AdVANON | — Pr [ANON}}DAC(P) = 1] < 5 +negl()

where the anonymity game ANONLDAC(Y\) is defined in Figure'_@ and the ora-
cles given to the adversary are all the oracles (OCreateHl ()CreateHU & (hProveToAdv.
OIssueToAdv} OlssueFromAdv, OUIssueFromAdv’ and OUIssueToAdv) which are deﬁned

in Figure [3

ANONTPAC (1Y) unForge PA¢(1%)
1: (pp,td) < Setup(1*,1%,17,1%) 1: (pp,td) < Setup(1*,1%,1™ 1Y)
2: (pk) < A(pp) 2: (pk, {ski}ie[n]) < lssKeyGen(pp)
3: (sko,sky,credo, credy, L') + A® (pp) 3: b+ (AOUnf(pk) < Verify(pk, L))
4: (chaing, chainy) <= (Ecred(credo), Ecred (credy)) 4: returnb
5: if chaing ¢ PKV chainy ¢ PK then 5:
6 : return 1/ Ensure chains are honest
7 b & {01}
8: (Prove(sky,credy) <> A)
9: b« AS (pp)

10: return b =¥

Fig. 6: Anonymity game ANONPA°(1%) and Unforgeability game unForgevTADAc(lx) for
TDAC scheme. The oracles O is described in Figure

Unforgeability. We define unforgeability for our threshold DAC scheme in Def-
inition[I6] To begin the game in the unforgeability setting, an honestly generated

24

threshold root key is generated for a known handle (e.g., id = 0), thus allowing
the adversary to immediately begin calling O¢r@teH! The adversary is only al-
lowed to interact with oracles that result in honest users obtaining credentials
(i.e., QCreatetl - ()CreateHU 51y q OProveToAdv) gince allowing the adversary access to
the other oracles would result in the adversary being trivially able to produce a
showing to defeat the game (i.e., receiving a credential from QU'ssueToAdv),

Definition 16 (Unforgeability). A threshold delegatable anonymous creden-
tials scheme TDAC = (Setup, IssKeyGen, UserKeyGen, Issue, Receive, CredComb,
Ulssue, UReceive, UCredComb, Prove, Verify) is unforgeable if for all A € N;n €
O(N),t € O(N) such that 0 < t < n, level L = O(X\) and if the advantage of any
PPT adversaries A defined by Adv#rggga in unForge [°A€(1*) is negligible. A is
given the oracles OCreateHl - CreateHU = g OProveToAdv - from Figure @ labeled as
Ount-
Adv#’?DFchgf4 =Pr [unForgeLDAC(l/\) = 1} < negl(\)

where the unforgeability game unForgeLDAC(l’\) is defined in Figure @

4.2 Construction of TDAC

In Construction [I} we provide a construction of our threshold delegatable
anonymous credentials scheme TDAC = (Setup, IssKeyGen, UserKeyGen, Issue,
Receive, CredComb, Ulssue, UReceive, UCredComb, Prove, Verify), which we call

IItpac.

Parameters: A security parameter A € N, level L € N, the total number of
parties that share issuer keys, ¢t € N and the threshold ¢ € N.

Building-blocks: A threshold mercurial signature scheme TMS = (Setup,
KeyGen, GenAuxTag, VerifyAux, VerifyTag, ParSign, ParVerify, Reconst, Verify,
ConvertTag, ConvertParSK, ConvertParPK, ConvertPK, ConvertSig, ChangeRep)
as in Definition [3] Shamir secret sharing SSS = (Share, Reconst) as in Figure

Construction 1 (Threshold Delegatable Anonymous Credentials) The
threshold DAC construction Iltpac is described below.

— Setup(1*,1L,1™,1%) — (pp, td)
1. Run ppy, + TMS.Setup(1*,¢ = 2)
2. Fori € [L]: Run ppy_; < TMS.ExtendSetup(ppy_;1)
3. Output pp = ({pp; }ie(L); 7, t)
— IssKeyGen(pp, L') — (pk; {ski}ie[n])
1. Run (pk, {sk;}icpn)) < TMS.KeyGen(ppL,,n,tm
2. Output (pk, {ski}ic[n))
— UserKeyGen(pp) — (pk, sk)
10 Since 7 is only needed to construct the initial public key (not randomizations
of it) and prove the relationship between h and pk (for signing the key in

(Issue <> Receive)), it can be jointly computed along with this proof during DKG
so that no issuer knows g.

25

1. (pk,sk) « TMS.KeyGen(pp;,1,1)
2. Output (pk,sk)

— (Issue(sk ;, cred, L") <+ Receive(skr, L')) — credg ;-

1. The receiver sends their combined public key, pk, to the issuer and inter-
acts with the issuer to compute the portion of Sign that requires the tag
secret p similar to (MBG™ 23’,E|

2. Issuer i then signs pk yielding a signature, o; = Sign(sky ;, pk). The issuer
sends their credential chain, credp/_1, (which is L for the root issuer)
along with o; to the receiver.

3. Recewver distributes (credr _1,0;) to each other receiver.

4. Each receiver stores this partial credential as cred; = (credr _1,0;) for use
in the CredComb function.

— CredComb({cred; };ex, pkg) — credg:

1. Compute the signature: o = TMS.CredComb({o;}iex) where o; is parsed
from cred;.

2. Compute the credential, cred = credr/_1||(pk, o) where credr,_1 is parsed
from cred;.

— (Ulssue(sk, ;, cred;) <+ UReceive(skr)) — credr: This is ezactly same as
(Issue(sk; ;, cred, L) <+ {Receive(skg j, L’)}jex) but with T = {0} (only a sin-
gle receiver).

— UCredComb({credr ; }icx,pkg) — credr: This is ezactly same as
CredComb({credr ; }icz, pkg) — credg.

— (Prove(skp, credp, L') <+ Verify(pk, L')) — b:

1. The prover samples y; & MC, p; <& KC for each level (i € [L']\ {0}) in
the chain and lets pg = 1 to ensure that the root key is not randomized.

2. The prover randomizes all public keys and signatures in their
credential credp wusing pk; = TMS.ConvertPK(pk;;p;), o7, =
TMS.ConvertSig(pk;, o3 pi), (Pkij1,01,1) = TMS.ChangeRep(pk;, o7 fti41)
for alli € [L—1]. This means that the final, pk;,, o is randomized using
(pk7,,07,) = TMS.ChangeRep(pky, 1,07 _4; L)

3. The prover sends over their randomized credential, cred =
(cred)||...||cred}) where cred; = (pk;,al), and performs an interac-
tive proof of knowledge (such as a Camenisch-Stadler proof [CS97T]) that
they know the py, * sk that corresponds to the last public key in the chain.

4. The verifier then verifies each randomized public key in the credential with
the signatures and ensures the first key is exactly pk.

5. If all these checks hold, the verifier outputs 1 and if any checks fail, the
verifier outputs 0.

4.3 Security Analysis of TDAC

We formally state the security of our threshold DAC scheme in Construction![]]
in Theorems [15| to which are proven in Appendix [C]

11 Specifically, the receiver proves in zero-knowledge that M is correctly computed
w.r.t. h such that (M,N) e M and T € T7.

26

Theorem 15 (Correctness). Assume that the underlying threshold mercurial
signature scheme TMS is correct with respect to Definition |Z| Then our Iltpac
construction in Construction[l] is a correct threshold delegatable anonymous cre-
dentials scheme as per Definition[I]}

Theorem 16 (Unforgeability). Assume that the underlying threshold mer-
curial signature scheme TMS is unforgeable with respect to Definition [Then
our Iltpac construction in C’onst'ructionm is an unforgeable threshold delegatable
anonymous credentials scheme TDAC as per Definition [16,

Theorem 17 (Anonymity). Assume that the underlying threshold mercurial
signature scheme TMS is public key class hiding and message class hiding with
respect to Definition [6, Definition [, and Definition [§ Then our Iltpac con-
struction in Construction (1| is an anonymous threshold delegatable anonymous
credentials scheme as per Definition [15

References

AFGT10. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of
LNCS, pages 209-236. Springer, Berlin, Heidelberg, August 2010.

AGHO11. Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Optimal structure-preserving signatures in asymmetric bilinear groups.
In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
649-666. Springer, Berlin, Heidelberg, August 2011.

ANOT25. Masayuki Abe, Masaya Nanri, Miyako Ohkubo, Octavio Perez Kempner,
Daniel Slamanig, and Mehdi Tibouchi. Scalable mixnets from two-party
mercurial signatures on randomizable ciphertexts. In Computer Security
- ESORICS 2025, 2025.

ANPKT24. Masayuki Abe, Masaya Nanri, Octavio Perez-Kempner, and Mehdi Ti-
bouchi. Interactive threshold mercurial signatures and applications. In
Kai-Min Chung and Yu Sasaki, editors, ASTACRYPT 2024, Part III, vol-
ume 15486 of LNCS, pages 69-103. Springer, Singapore, December 2024.

BBH'24. Carsten Baum, Olivier Blazy, Jaap-Henk Hoepman, Anja Lehmann,
Anna Lysyanskaya, René Mayrhofer, Hart Montgomery, Ngoc Khanh
Nguyen, abhi shelat, Daniel Slamanig, Sgren Eller Thomsen, Jan
Camenisch, Eysa Lee, Bart Preneel, Stefano Tessaro, and Carmela
Troncoso. Cryptographers’ feedback on the eu digital iden-
tity’s arf, 2024. https://github.com/eu-digital-identity-wallet/
eudi-doc-architecture-and-reference-framework/discussions/211.

BCC'09. Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna
Lysyanskaya, and Hovav Shacham. Randomizable proofs and delegatable
anonymous credentials. In Shai Halevi, editor, CRYPTO 2009, volume
5677 of LNCS, pages 108-125. Springer, Berlin, Heidelberg, August 2009.

BEK™21. Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai
Samelin. Issuer-hiding attribute-based credentials. In Mauro Conti, Marc
Stevens, and Stephan Krenn, editors, CANS 21, volume 13099 of LNCS,
pages 158—178. Springer, Cham, December 2021.

BFR24. Balthazar Bauer, Georg Fuchsbauer, and Fabian Regen. On proving equiv-
alence class signatures secure from non-interactive assumptions. In Qiang
Tang and Vanessa Teague, editors, PKC 2024, Part I, volume 14601 of
LNCS, pages 3-36. Springer, Cham, April 2024.

27

https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/discussions/211
https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/discussions/211

BHKSI18.

CDHK15.

CGH*24.

CHO02.

Chag5.

CKL™16.

CKP*23.

CLO1.

CLO04.

CL06.

CL19.

CL21.

CLPK22.

CRS™21.

Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schnei-
der. Signatures with flexible public key: Introducing equivalence classes
for public keys. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 405-434. Springer,
Cham, December 2018.

Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions
and practical constructions. In Tetsu Iwata and Jung Hee Cheon, edi-
tors, ASTACRYPT 2015, Part II, volume 9453 of LNCS, pages 262—-288.
Springer, Berlin, Heidelberg, November / December 2015.

Sofia Celi, Scott Griffy, Lucjan Hanzlik, Octavio Perez-Kempner, and
Daniel Slamanig. SoK: Signatures with randomizable keys. In Jeremy
Clark and Elaine Shi, editors, FC 2024, Part II, volume 14745 of LNCS,
pages 160-187. Springer, Cham, March 2024.

Jan Camenisch and Els Van Herreweghen. Design and implementation of
the idemix anonymous credential system. In Conference on Computer and
Communications Security, 2002.

David Chaum. Security without identification: Transaction systems to
make big brother obsolete. Commun. ACM, 28(10):1030-1044, 1985.

Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Laesspe Mikkelsen,
Gregory Neven, and Michael @stergaard Pedersen. Formal treatment of
privacy-enhancing credential systems. In Orr Dunkelman and Liam Ke-
liher, editors, SAC 2015, volume 9566 of LNCS, pages 3—24. Springer,
Cham, August 2016.

Elizabeth C. Crites, Markulf Kohlweiss, Bart Preneel, Mahdi Sedaghat,
and Daniel Slamanig. Threshold structure-preserving signatures. In Jian
Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part II, volume 14439
of LNCS, pages 348-382. Springer, Singapore, December 2023.

Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Birgit Pfitzmann, editor, FUROCRYPT 2001, volume 2045 of LNCS,
pages 93-118. Springer, Berlin, Heidelberg, May 2001.

Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 56—72. Springer, Berlin, Hei-
delberg, August 2004.

Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 78—
96. Springer, Berlin, Heidelberg, August 2006.

Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous
credentials from mercurial signatures. In Mitsuru Matsui, editor, C'T-
RSA 2019, volume 11405 of LNCS, pages 535-555. Springer, Cham, March
2019.

Elizabeth C. Crites and Anna Lysyanskaya. Mercurial signatures for
variable-length messages. PoPETs, 2021(4):441-463, October 2021.
Aisling Connolly, Pascal Lafourcade, and Octavio Perez-Kempner. Im-
proved constructions of anonymous credentials from structure-preserving
signatures on equivalence classes. In Goichiro Hanaoka, Junji Shikata, and
Yohei Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS, pages
409-438. Springer, Cham, March 2022.

Valerio Cini, Sebastian Ramacher, Daniel Slamanig, Christoph Striecks,
and Erkan Tairi. Updatable signatures and message authentication codes.

28

CSo97.

CvH91.

Des88.

DF90.

DFL19.

DKL™*23.

DS19.

elD24.

ESS21.

FHS19.

FKM™16.

FLL25.

GGN16.

In Juan Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages
691-723. Springer, Cham, May 2021.

Jan Camenisch and Markus Stadler. Efficient group signature schemes
for large groups (extended abstract). In Burton S. Kaliski, Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 410-424. Springer, Berlin, Hei-
delberg, August 1997.

David Chaum and Eugéne van Heyst. Group signatures. In Donald W.
Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages 257—265.
Springer, Berlin, Heidelberg, April 1991.

Yvo Desmedt. Society and group oriented cryptography: A new concept.
In Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 120—
127. Springer, Berlin, Heidelberg, August 1988.

Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, CRYPT(0’89, volume 435 of LNCS, pages 307-315. Springer,
New York, August 1990.

Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of
deterministic wallets. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 651-668. ACM
Press, November 2019.

Jack Doerner, Yashvanth Kondi, Eysa Lee, Abhi Shelat, and LaKyah
Tyner. Threshold bbs+ signatures for distributed anonymous credential
issuance. In 2028 IEEE Symposium on Security and Privacy (SP), pages
773-789, 2023.

David Derler and Daniel Slamanig. Key-homomorphic signatures: defini-
tions and applications to multiparty signatures and non-interactive zero-
knowledge. DCC, 87(6):1373-1413, 2019.

Regulation (EU) 2024/1183 of the European Parliament and of the
Council of 11 April 2024 amending Regulation (EU) No 910/2014
as regards establishing the European Digital Identity Framework.
https://ec.europa.eu/digital-building-blocks/sites/spaces/
EUDIGITALIDENTITYWALLET/pages/694487738/EU+Digital+Identity+
Wallet+Home, 2024. Official Journal of the European Union.

Edward Eaton, Douglas Stebila, and Roy Stracovsky. Post-quantum key-
blinding for authentication in anonymity networks. In Patrick Longa and
Carla Rafols, editors, LATINCRYPT 2021, volume 12912 of LNCS, pages
67-87. Springer, Cham, October 2021.

Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. Journal of Cryptology, 32(2):498-546, April 2019.

Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider,
Dominique Schréder, and Mark Simkin. FEfficient unlinkable sanitizable
signatures from signatures with re-randomizable keys. In Chen-Mou
Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,
PKC 2016, Part I, volume 9614 of LNCS, pages 301-330. Springer, Berlin,
Heidelberg, March 2016.

Andrea Flamini, Eysa Lee, and Anna Lysyanskaya. Multi-holder anony-
mous credentials from BBS signatures. 2025.

Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-
optimal DSA /ECDSA signatures and an application to bitcoin wallet secu-
rity. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors,
ACNS 2016, volume 9696 of LNCS, pages 156-174. Springer, Cham, June
2016.

29

https://ec.europa.eu/digital-building-blocks/sites/spaces/EUDIGITALIDENTITYWALLET/pages/694487738/EU+Digital+Identity+Wallet+Home
https://ec.europa.eu/digital-building-blocks/sites/spaces/EUDIGITALIDENTITYWALLET/pages/694487738/EU+Digital+Identity+Wallet+Home
https://ec.europa.eu/digital-building-blocks/sites/spaces/EUDIGITALIDENTITYWALLET/pages/694487738/EU+Digital+Identity+Wallet+Home

Ghalé.

GKROS.

GL24.

GLM*24a.

GLM™24b.

GS08.

HP22.

HYP23.

ISO13.

MBG*23.

MSM24.

MXC*16.

Nak09.

PCCY22.

PM23.

Essam Ghadafi. Short structure-preserving signatures. In Kazue Sako,
editor, CT-RSA 2016, volume 9610 of LNCS, pages 305-321. Springer,
Cham, February / March 2016.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 113-122. ACM Press,
May 2008.

Scott Griffy and Anna Lysyanskaya. PACIFIC: Privacy-preserving auto-
mated contact tracing featuring integrity against cloning. CiC, 1(2):12,
2024.

Scott Griffy, Anna Lysyanskaya, Omid Mir, Octavio Perez Kempner,
and Daniel Slamanig. Delegatable anonymous credentials from mercu-
rial signatures with stronger privacy. Cryptology ePrint Archive, Report
2024/1216, 2024.

Scott Griffy, Anna Lysyanskaya, Omid Mir, Octavio Perez-Kempner, and
Daniel Slamanig. Delegatable anonymous credentials from mercurial sig-
natures with stronger privacy. In Kai-Min Chung and Yu Sasaki, edi-
tors, ASTACRYPT 202/, Part II, volume 15485 of LNCS, pages 296-325.
Springer, Singapore, December 2024.

Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415-432. Springer, Berlin, Heidelberg, April 2008.
Chloé Hébant and David Pointcheval. Traceable constant-size multi-
authority credentials. In Clemente Galdi and Stanislaw Jarecki, editors,
SCN 22, volume 13409 of LNCS, pages 411-434. Springer, Cham, Septem-
ber 2022.

Hyperledger anoncreds, 2023. https://hyperledger.github.io/
anoncreds-spec/.

Iso: Information technology - security techniques - anonymous digital sig-
natures - part 2: Mechanisms using a group public key. Technical re-
port, International Organization for Standardization, Geneva, Switzer-
land, 2013. https://www.iso.org/standard/56916.html.

Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel
Slamanig. Aggregate signatures with versatile randomization and issuer-
hiding multi-authority anonymous credentials. In Weizhi Meng, Chris-
tian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, ACM
CCS 2023, pages 30-44. ACM Press, November 2023.

Omid Mir, Daniel Slamanig, and René Mayrhofer. Threshold delegat-
able anonymous credentials with controlled and fine-grained delegation.
IEEE Transactions on Dependable and Secure Computing, 21(4):2312—
2326, 2024.

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The
honey badger of BET protocols. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 2016, pages 31-42. ACM Press, October 2016.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Cryp-
tography Mailing list at hitps://metzdowd.com, 03 2009.

Shimin Pan, Kwan Yin Chan, Handong Cui, and Tsz Hon Yuen. Multi-
signatures for ECDSA and its applications in blockchain. In Khoa Nguyen,
Guomin Yang, Fuchun Guo, and Willy Susilo, editors, ACISP 22, volume
13494 of LNCS, pages 265-285. Springer, Cham, November 2022.

Colin Putman and Keith M. Martin. Selective delegation of attributes in
mercurial signature credentials. In Elizabeth A. Quaglia, editor, 19th IMA

30

https://hyperledger.github.io/anoncreds-spec/
https://hyperledger.github.io/anoncreds-spec/
https://www.iso.org/standard/56916.html

PZ13.

SAB™19.

Sha79.
Sho97.

TCG19.

W3C22.

YMR*109.

International Conference on Cryptography and Coding, volume 14421 of
LNCS, pages 181-196. Springer, Cham, December 2023.

Christian Paquin and Greg Zaverucha. U-prove cryptographic specification
v1.1. Technical report, Microsoft Corporation, 2013.

Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn,
and George Danezis. Coconut: Threshold issuance selective disclosure
credentials with applications to distributed ledgers. In NDSS 2019. The
Internet Society, February 2019.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.
Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256—266. Springer, Berlin, Heidelberg, May 1997.

Trusted platform module library part 1: Architecture. Technical report,
Trusted Computing Group, 2019.

Decentralized identifiers (dids) v1.0. Technical report, World Wide Web
Consortium, 2022.

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and
Ittai Abraham. HotStuff: BFT consensus with linearity and responsive-
ness. In Peter Robinson and Faith Ellen, editors, 38th ACM PODC, pages
347-356. ACM, July / August 2019.

31

